ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intss GIF version

Theorem intss 3923
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
intss (𝐴𝐵 𝐵 𝐴)

Proof of Theorem intss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imim1 76 . . . . 5 ((𝑦𝐴𝑦𝐵) → ((𝑦𝐵𝑥𝑦) → (𝑦𝐴𝑥𝑦)))
21al2imi 1484 . . . 4 (∀𝑦(𝑦𝐴𝑦𝐵) → (∀𝑦(𝑦𝐵𝑥𝑦) → ∀𝑦(𝑦𝐴𝑥𝑦)))
3 vex 2782 . . . . 5 𝑥 ∈ V
43elint 3908 . . . 4 (𝑥 𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
53elint 3908 . . . 4 (𝑥 𝐴 ↔ ∀𝑦(𝑦𝐴𝑥𝑦))
62, 4, 53imtr4g 205 . . 3 (∀𝑦(𝑦𝐴𝑦𝐵) → (𝑥 𝐵𝑥 𝐴))
76alrimiv 1900 . 2 (∀𝑦(𝑦𝐴𝑦𝐵) → ∀𝑥(𝑥 𝐵𝑥 𝐴))
8 ssalel 3192 . 2 (𝐴𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
9 ssalel 3192 . 2 ( 𝐵 𝐴 ↔ ∀𝑥(𝑥 𝐵𝑥 𝐴))
107, 8, 93imtr4i 201 1 (𝐴𝐵 𝐵 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1373  wcel 2180  wss 3177   cint 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-in 3183  df-ss 3190  df-int 3903
This theorem is referenced by:  lspss  14328  clsss  14757
  Copyright terms: Public domain W3C validator