![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intss | GIF version |
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
intss | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1 76 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦))) | |
2 | 1 | al2imi 1399 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦))) |
3 | vex 2636 | . . . . 5 ⊢ 𝑥 ∈ V | |
4 | 3 | elint 3716 | . . . 4 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
5 | 3 | elint 3716 | . . . 4 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)) |
6 | 2, 4, 5 | 3imtr4g 204 | . . 3 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ ∩ 𝐴)) |
7 | 6 | alrimiv 1809 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → ∀𝑥(𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ ∩ 𝐴)) |
8 | dfss2 3028 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
9 | dfss2 3028 | . 2 ⊢ (∩ 𝐵 ⊆ ∩ 𝐴 ↔ ∀𝑥(𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ ∩ 𝐴)) | |
10 | 7, 8, 9 | 3imtr4i 200 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1294 ∈ wcel 1445 ⊆ wss 3013 ∩ cint 3710 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-in 3019 df-ss 3026 df-int 3711 |
This theorem is referenced by: clsss 11970 |
Copyright terms: Public domain | W3C validator |