| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intss | GIF version | ||
| Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| intss | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1 76 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → ((𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦))) | |
| 2 | 1 | al2imi 1472 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → (∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦) → ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦))) |
| 3 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 4 | 3 | elint 3880 | . . . 4 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
| 5 | 3 | elint 3880 | . . . 4 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)) |
| 6 | 2, 4, 5 | 3imtr4g 205 | . . 3 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → (𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ ∩ 𝐴)) |
| 7 | 6 | alrimiv 1888 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → ∀𝑥(𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ ∩ 𝐴)) |
| 8 | dfss2 3172 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
| 9 | dfss2 3172 | . 2 ⊢ (∩ 𝐵 ⊆ ∩ 𝐴 ↔ ∀𝑥(𝑥 ∈ ∩ 𝐵 → 𝑥 ∈ ∩ 𝐴)) | |
| 10 | 7, 8, 9 | 3imtr4i 201 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝐵 ⊆ ∩ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2167 ⊆ wss 3157 ∩ cint 3874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-int 3875 |
| This theorem is referenced by: lspss 13955 clsss 14354 |
| Copyright terms: Public domain | W3C validator |