ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intss GIF version

Theorem intss 3852
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
intss (𝐴𝐵 𝐵 𝐴)

Proof of Theorem intss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imim1 76 . . . . 5 ((𝑦𝐴𝑦𝐵) → ((𝑦𝐵𝑥𝑦) → (𝑦𝐴𝑥𝑦)))
21al2imi 1451 . . . 4 (∀𝑦(𝑦𝐴𝑦𝐵) → (∀𝑦(𝑦𝐵𝑥𝑦) → ∀𝑦(𝑦𝐴𝑥𝑦)))
3 vex 2733 . . . . 5 𝑥 ∈ V
43elint 3837 . . . 4 (𝑥 𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
53elint 3837 . . . 4 (𝑥 𝐴 ↔ ∀𝑦(𝑦𝐴𝑥𝑦))
62, 4, 53imtr4g 204 . . 3 (∀𝑦(𝑦𝐴𝑦𝐵) → (𝑥 𝐵𝑥 𝐴))
76alrimiv 1867 . 2 (∀𝑦(𝑦𝐴𝑦𝐵) → ∀𝑥(𝑥 𝐵𝑥 𝐴))
8 dfss2 3136 . 2 (𝐴𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
9 dfss2 3136 . 2 ( 𝐵 𝐴 ↔ ∀𝑥(𝑥 𝐵𝑥 𝐴))
107, 8, 93imtr4i 200 1 (𝐴𝐵 𝐵 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wcel 2141  wss 3121   cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-int 3832
This theorem is referenced by:  clsss  12912
  Copyright terms: Public domain W3C validator