ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intss GIF version

Theorem intss 3867
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
intss (𝐴𝐵 𝐵 𝐴)

Proof of Theorem intss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imim1 76 . . . . 5 ((𝑦𝐴𝑦𝐵) → ((𝑦𝐵𝑥𝑦) → (𝑦𝐴𝑥𝑦)))
21al2imi 1458 . . . 4 (∀𝑦(𝑦𝐴𝑦𝐵) → (∀𝑦(𝑦𝐵𝑥𝑦) → ∀𝑦(𝑦𝐴𝑥𝑦)))
3 vex 2742 . . . . 5 𝑥 ∈ V
43elint 3852 . . . 4 (𝑥 𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
53elint 3852 . . . 4 (𝑥 𝐴 ↔ ∀𝑦(𝑦𝐴𝑥𝑦))
62, 4, 53imtr4g 205 . . 3 (∀𝑦(𝑦𝐴𝑦𝐵) → (𝑥 𝐵𝑥 𝐴))
76alrimiv 1874 . 2 (∀𝑦(𝑦𝐴𝑦𝐵) → ∀𝑥(𝑥 𝐵𝑥 𝐴))
8 dfss2 3146 . 2 (𝐴𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
9 dfss2 3146 . 2 ( 𝐵 𝐴 ↔ ∀𝑥(𝑥 𝐵𝑥 𝐴))
107, 8, 93imtr4i 201 1 (𝐴𝐵 𝐵 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351  wcel 2148  wss 3131   cint 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-int 3847
This theorem is referenced by:  lspss  13490  clsss  13703
  Copyright terms: Public domain W3C validator