Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptxor | GIF version |
Description: Modus ponendo tollens 2, one of the "indemonstrables" in Stoic logic. Note that this uses exclusive-or ⊻. See rule 2 on [Lopez-Astorga] p. 12 , rule 4 on [Sanford] p. 39 and rule A4 in [Hitchcock] p. 5 . (Contributed by David A. Wheeler, 2-Mar-2018.) |
Ref | Expression |
---|---|
mptxor.min | ⊢ 𝜑 |
mptxor.maj | ⊢ (𝜑 ⊻ 𝜓) |
Ref | Expression |
---|---|
mptxor | ⊢ ¬ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptxor.min | . 2 ⊢ 𝜑 | |
2 | mptxor.maj | . . . 4 ⊢ (𝜑 ⊻ 𝜓) | |
3 | df-xor 1366 | . . . 4 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | |
4 | 2, 3 | mpbi 144 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) |
5 | 4 | simpri 112 | . 2 ⊢ ¬ (𝜑 ∧ 𝜓) |
6 | 1, 5 | mptnan 1413 | 1 ⊢ ¬ 𝜓 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ∨ wo 698 ⊻ wxo 1365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-xor 1366 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |