| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptxor | GIF version | ||
| Description: Modus ponendo tollens 2, one of the "indemonstrables" in Stoic logic. Note that this uses exclusive-or ⊻. See rule 2 on [Lopez-Astorga] p. 12 , rule 4 on [Sanford] p. 39 and rule A4 in [Hitchcock] p. 5 . (Contributed by David A. Wheeler, 2-Mar-2018.) |
| Ref | Expression |
|---|---|
| mptxor.min | ⊢ 𝜑 |
| mptxor.maj | ⊢ (𝜑 ⊻ 𝜓) |
| Ref | Expression |
|---|---|
| mptxor | ⊢ ¬ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptxor.min | . 2 ⊢ 𝜑 | |
| 2 | mptxor.maj | . . . 4 ⊢ (𝜑 ⊻ 𝜓) | |
| 3 | df-xor 1387 | . . . 4 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | |
| 4 | 2, 3 | mpbi 145 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) |
| 5 | 4 | simpri 113 | . 2 ⊢ ¬ (𝜑 ∧ 𝜓) |
| 6 | 1, 5 | mptnan 1434 | 1 ⊢ ¬ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 709 ⊻ wxo 1386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-xor 1387 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |