| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-xor | GIF version | ||
| Description: Define exclusive disjunction (logical 'xor'). Return true if either the left or right, but not both, are true. Contrast with ∧ (wa 104), ∨ (wo 709), and → (wi 4) . (Contributed by FL, 22-Nov-2010.) (Modified by Jim Kingdon, 1-Mar-2018.) |
| Ref | Expression |
|---|---|
| df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wxo 1386 | . 2 wff (𝜑 ⊻ 𝜓) |
| 4 | 1, 2 | wo 709 | . . 3 wff (𝜑 ∨ 𝜓) |
| 5 | 1, 2 | wa 104 | . . . 4 wff (𝜑 ∧ 𝜓) |
| 6 | 5 | wn 3 | . . 3 wff ¬ (𝜑 ∧ 𝜓) |
| 7 | 4, 6 | wa 104 | . 2 wff ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) |
| 8 | 3, 7 | wb 105 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff set class |
| This definition is referenced by: xoranor 1388 xorbi2d 1391 xorbi1d 1392 xorbin 1395 xorcom 1399 xornbidc 1402 xordc1 1404 anxordi 1411 truxortru 1430 truxorfal 1431 falxortru 1432 falxorfal 1433 mptxor 1435 reapltxor 8633 zeoxor 12051 odd2np1 12055 bdxor 15566 trirec0xor 15776 |
| Copyright terms: Public domain | W3C validator |