| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-xor | GIF version | ||
| Description: Define exclusive disjunction (logical 'xor'). Return true if either the left or right, but not both, are true. Contrast with ∧ (wa 104), ∨ (wo 712), and → (wi 4) . (Contributed by FL, 22-Nov-2010.) (Modified by Jim Kingdon, 1-Mar-2018.) |
| Ref | Expression |
|---|---|
| df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wxo 1397 | . 2 wff (𝜑 ⊻ 𝜓) |
| 4 | 1, 2 | wo 712 | . . 3 wff (𝜑 ∨ 𝜓) |
| 5 | 1, 2 | wa 104 | . . . 4 wff (𝜑 ∧ 𝜓) |
| 6 | 5 | wn 3 | . . 3 wff ¬ (𝜑 ∧ 𝜓) |
| 7 | 4, 6 | wa 104 | . 2 wff ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) |
| 8 | 3, 7 | wb 105 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff set class |
| This definition is referenced by: xoranor 1399 xorbi2d 1402 xorbi1d 1403 xorbin 1406 xorcom 1410 xornbidc 1413 xordc1 1415 anxordi 1422 truxortru 1441 truxorfal 1442 falxortru 1443 falxorfal 1444 mptxor 1446 reapltxor 8704 zeoxor 12346 odd2np1 12350 bdxor 16109 trirec0xor 16324 |
| Copyright terms: Public domain | W3C validator |