![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-xor | GIF version |
Description: Define exclusive disjunction (logical 'xor'). Return true if either the left or right, but not both, are true. Contrast with ∧ (wa 103), ∨ (wo 680), and → (wi 4) . (Contributed by FL, 22-Nov-2010.) (Modified by Jim Kingdon, 1-Mar-2018.) |
Ref | Expression |
---|---|
df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wxo 1336 | . 2 wff (𝜑 ⊻ 𝜓) |
4 | 1, 2 | wo 680 | . . 3 wff (𝜑 ∨ 𝜓) |
5 | 1, 2 | wa 103 | . . . 4 wff (𝜑 ∧ 𝜓) |
6 | 5 | wn 3 | . . 3 wff ¬ (𝜑 ∧ 𝜓) |
7 | 4, 6 | wa 103 | . 2 wff ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) |
8 | 3, 7 | wb 104 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
This definition is referenced by: xoranor 1338 xorbi2d 1341 xorbi1d 1342 xorbin 1345 xorcom 1349 xornbidc 1352 xordc1 1354 anxordi 1361 truxortru 1380 truxorfal 1381 falxortru 1382 falxorfal 1383 mptxor 1385 reapltxor 8269 zeoxor 11414 odd2np1 11418 bdxor 12726 |
Copyright terms: Public domain | W3C validator |