| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-xor | GIF version | ||
| Description: Define exclusive disjunction (logical 'xor'). Return true if either the left or right, but not both, are true. Contrast with ∧ (wa 104), ∨ (wo 710), and → (wi 4) . (Contributed by FL, 22-Nov-2010.) (Modified by Jim Kingdon, 1-Mar-2018.) |
| Ref | Expression |
|---|---|
| df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wxo 1395 | . 2 wff (𝜑 ⊻ 𝜓) |
| 4 | 1, 2 | wo 710 | . . 3 wff (𝜑 ∨ 𝜓) |
| 5 | 1, 2 | wa 104 | . . . 4 wff (𝜑 ∧ 𝜓) |
| 6 | 5 | wn 3 | . . 3 wff ¬ (𝜑 ∧ 𝜓) |
| 7 | 4, 6 | wa 104 | . 2 wff ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) |
| 8 | 3, 7 | wb 105 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff set class |
| This definition is referenced by: xoranor 1397 xorbi2d 1400 xorbi1d 1401 xorbin 1404 xorcom 1408 xornbidc 1411 xordc1 1413 anxordi 1420 truxortru 1439 truxorfal 1440 falxortru 1441 falxorfal 1442 mptxor 1444 reapltxor 8669 zeoxor 12224 odd2np1 12228 bdxor 15846 trirec0xor 16058 |
| Copyright terms: Public domain | W3C validator |