Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-xor | GIF version |
Description: Define exclusive disjunction (logical 'xor'). Return true if either the left or right, but not both, are true. Contrast with ∧ (wa 103), ∨ (wo 698), and → (wi 4) . (Contributed by FL, 22-Nov-2010.) (Modified by Jim Kingdon, 1-Mar-2018.) |
Ref | Expression |
---|---|
df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wxo 1365 | . 2 wff (𝜑 ⊻ 𝜓) |
4 | 1, 2 | wo 698 | . . 3 wff (𝜑 ∨ 𝜓) |
5 | 1, 2 | wa 103 | . . . 4 wff (𝜑 ∧ 𝜓) |
6 | 5 | wn 3 | . . 3 wff ¬ (𝜑 ∧ 𝜓) |
7 | 4, 6 | wa 103 | . 2 wff ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) |
8 | 3, 7 | wb 104 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
Colors of variables: wff set class |
This definition is referenced by: xoranor 1367 xorbi2d 1370 xorbi1d 1371 xorbin 1374 xorcom 1378 xornbidc 1381 xordc1 1383 anxordi 1390 truxortru 1409 truxorfal 1410 falxortru 1411 falxorfal 1412 mptxor 1414 reapltxor 8487 zeoxor 11806 odd2np1 11810 bdxor 13718 trirec0xor 13924 |
Copyright terms: Public domain | W3C validator |