| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-xor | GIF version | ||
| Description: Define exclusive disjunction (logical 'xor'). Return true if either the left or right, but not both, are true. Contrast with ∧ (wa 104), ∨ (wo 713), and → (wi 4) . (Contributed by FL, 22-Nov-2010.) (Modified by Jim Kingdon, 1-Mar-2018.) |
| Ref | Expression |
|---|---|
| df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wxo 1417 | . 2 wff (𝜑 ⊻ 𝜓) |
| 4 | 1, 2 | wo 713 | . . 3 wff (𝜑 ∨ 𝜓) |
| 5 | 1, 2 | wa 104 | . . . 4 wff (𝜑 ∧ 𝜓) |
| 6 | 5 | wn 3 | . . 3 wff ¬ (𝜑 ∧ 𝜓) |
| 7 | 4, 6 | wa 104 | . 2 wff ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) |
| 8 | 3, 7 | wb 105 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff set class |
| This definition is referenced by: xoranor 1419 xorbi2d 1422 xorbi1d 1423 xorbin 1426 xorcom 1430 xornbidc 1433 xordc1 1435 anxordi 1442 truxortru 1461 truxorfal 1462 falxortru 1463 falxorfal 1464 mptxor 1466 reapltxor 8744 zeoxor 12388 odd2np1 12392 bdxor 16223 trirec0xor 16443 |
| Copyright terms: Public domain | W3C validator |