| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpri | GIF version | ||
| Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| simpri.1 | ⊢ (𝜑 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| simpri | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpri.1 | . 2 ⊢ (𝜑 ∧ 𝜓) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-ia2 107 |
| This theorem is referenced by: bi3 119 dfbi2 388 olc 712 mptxor 1435 sb4bor 1849 ordsoexmid 4599 eninl 7172 eninr 7173 pw1ne1 7312 negiso 8999 infrenegsupex 9685 xrnegiso 11444 infxrnegsupex 11445 cos01bnd 11940 cos1bnd 11941 cos2bnd 11942 sincos2sgn 11948 sin4lt0 11949 egt2lt3 11962 ssnnctlemct 12688 slotslfn 12729 strslfvd 12745 strslfv2d 12746 strslfv 12748 strslfv3 12749 strsl0 12752 setsslid 12754 setsslnid 12755 rngplusgg 12839 rngmulrg 12840 srngplusgd 12850 srngmulrd 12851 srnginvld 12852 lmodplusgd 12868 lmodscad 12869 lmodvscad 12870 ipsaddgd 12880 ipsmulrd 12881 ipsscad 12882 ipsvscad 12883 ipsipd 12884 topgrpplusgd 12900 topgrptsetd 12901 prdsex 12971 prdsvallem 12974 prdsval 12975 prdssca 12977 prdsmulr 12980 imasex 13007 imasival 13008 imasbas 13009 imasplusg 13010 imasmulr 13011 fnmgp 13554 mgpvalg 13555 mgpex 13557 mgpbasg 13558 mgpscag 13559 mgptsetg 13560 mgpdsg 13562 mgpress 13563 ring1 13691 opprvalg 13701 opprex 13705 opprsllem 13706 rmodislmod 13983 sraval 14069 sralemg 14070 srascag 14074 sravscag 14075 sraipg 14076 sraex 14078 zlmval 14259 zlmlemg 14260 zlmmulrg 14263 zlmsca 14264 zlmvscag 14265 znmul 14274 psrval 14296 fnpsr 14297 setsmsdsg 14800 cosz12 15100 sinpi 15105 sinhalfpilem 15111 coshalfpi 15117 sincosq1lem 15145 tangtx 15158 sincos4thpi 15160 tan4thpi 15161 sincos6thpi 15162 sincos3rdpi 15163 pigt3 15164 logltb 15194 lgsdir2lem4 15356 lgsdir2lem5 15357 |
| Copyright terms: Public domain | W3C validator |