| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpri | GIF version | ||
| Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| simpri.1 | ⊢ (𝜑 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| simpri | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpri.1 | . 2 ⊢ (𝜑 ∧ 𝜓) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-ia2 107 |
| This theorem is referenced by: bi3 119 dfbi2 388 olc 715 mptxor 1446 sb4bor 1861 ordsoexmid 4631 eninl 7232 eninr 7233 pw1ne1 7382 negiso 9070 infrenegsupex 9757 xrnegiso 11739 infxrnegsupex 11740 cos01bnd 12235 cos1bnd 12236 cos2bnd 12237 sincos2sgn 12243 sin4lt0 12244 egt2lt3 12257 ssnnctlemct 12983 slotslfn 13024 strslfvd 13040 strslfv2d 13041 strslfv 13043 strslfv3 13044 strsl0 13047 setsslid 13049 setsslnid 13050 rngplusgg 13136 rngmulrg 13137 srngplusgd 13147 srngmulrd 13148 srnginvld 13149 lmodplusgd 13165 lmodscad 13166 lmodvscad 13167 ipsaddgd 13177 ipsmulrd 13178 ipsscad 13179 ipsvscad 13180 ipsipd 13181 topgrpplusgd 13197 topgrptsetd 13198 prdsex 13268 prdsvallem 13271 prdsval 13272 prdssca 13274 prdsmulr 13277 imasex 13304 imasival 13305 imasbas 13306 imasplusg 13307 imasmulr 13308 fnmgp 13851 mgpvalg 13852 mgpex 13854 mgpbasg 13855 mgpscag 13856 mgptsetg 13857 mgpdsg 13859 mgpress 13860 ring1 13988 opprvalg 13998 opprex 14002 opprsllem 14003 rmodislmod 14280 sraval 14366 sralemg 14367 srascag 14371 sravscag 14372 sraipg 14373 sraex 14375 zlmval 14556 zlmlemg 14557 zlmmulrg 14560 zlmsca 14561 zlmvscag 14562 znmul 14571 psrval 14595 fnpsr 14596 setsmsdsg 15119 cosz12 15419 sinpi 15424 sinhalfpilem 15430 coshalfpi 15436 sincosq1lem 15464 tangtx 15477 sincos4thpi 15479 tan4thpi 15480 sincos6thpi 15481 sincos3rdpi 15482 pigt3 15483 logltb 15513 lgsdir2lem4 15675 lgsdir2lem5 15676 |
| Copyright terms: Public domain | W3C validator |