Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpri | GIF version |
Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
simpri.1 | ⊢ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
simpri | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpri.1 | . 2 ⊢ (𝜑 ∧ 𝜓) | |
2 | simpr 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-ia2 106 |
This theorem is referenced by: bi3 118 dfbi2 386 olc 706 mptxor 1419 sb4bor 1828 ordsoexmid 4546 eninl 7074 eninr 7075 pw1ne1 7206 negiso 8871 infrenegsupex 9553 xrnegiso 11225 infxrnegsupex 11226 cos01bnd 11721 cos1bnd 11722 cos2bnd 11723 sincos2sgn 11728 sin4lt0 11729 egt2lt3 11742 ssnnctlemct 12401 slotslfn 12442 strslfvd 12457 strslfv2d 12458 strslfv 12460 strsl0 12464 setsslid 12466 setsslnid 12467 rngplusgg 12535 rngmulrg 12536 srngplusgd 12542 srngmulrd 12543 srnginvld 12544 lmodplusgd 12553 lmodscad 12554 lmodvscad 12555 ipsaddgd 12561 ipsmulrd 12562 ipsscad 12563 ipsvscad 12564 ipsipd 12565 topgrpplusgd 12571 topgrptsetd 12572 setsmsdsg 13274 cosz12 13495 sinpi 13500 sinhalfpilem 13506 coshalfpi 13512 sincosq1lem 13540 tangtx 13553 sincos4thpi 13555 tan4thpi 13556 sincos6thpi 13557 sincos3rdpi 13558 pigt3 13559 logltb 13589 lgsdir2lem4 13726 lgsdir2lem5 13727 |
Copyright terms: Public domain | W3C validator |