![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpri | GIF version |
Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
simpri.1 | ⊢ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
simpri | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpri.1 | . 2 ⊢ (𝜑 ∧ 𝜓) | |
2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-ia2 107 |
This theorem is referenced by: bi3 119 dfbi2 388 olc 712 mptxor 1435 sb4bor 1846 ordsoexmid 4594 eninl 7156 eninr 7157 pw1ne1 7289 negiso 8974 infrenegsupex 9659 xrnegiso 11405 infxrnegsupex 11406 cos01bnd 11901 cos1bnd 11902 cos2bnd 11903 sincos2sgn 11909 sin4lt0 11910 egt2lt3 11923 ssnnctlemct 12603 slotslfn 12644 strslfvd 12660 strslfv2d 12661 strslfv 12663 strsl0 12667 setsslid 12669 setsslnid 12670 rngplusgg 12754 rngmulrg 12755 srngplusgd 12765 srngmulrd 12766 srnginvld 12767 lmodplusgd 12783 lmodscad 12784 lmodvscad 12785 ipsaddgd 12795 ipsmulrd 12796 ipsscad 12797 ipsvscad 12798 ipsipd 12799 topgrpplusgd 12815 topgrptsetd 12816 prdsex 12880 imasex 12888 imasival 12889 imasbas 12890 imasplusg 12891 imasmulr 12892 fnmgp 13418 mgpvalg 13419 mgpex 13421 mgpbasg 13422 mgpscag 13423 mgptsetg 13424 mgpdsg 13426 mgpress 13427 ring1 13555 opprvalg 13565 opprex 13569 opprsllem 13570 rmodislmod 13847 sraval 13933 sralemg 13934 srascag 13938 sravscag 13939 sraipg 13940 sraex 13942 zlmval 14115 zlmlemg 14116 zlmmulrg 14119 zlmsca 14120 zlmvscag 14121 znmul 14130 psrval 14152 fnpsr 14153 setsmsdsg 14648 cosz12 14915 sinpi 14920 sinhalfpilem 14926 coshalfpi 14932 sincosq1lem 14960 tangtx 14973 sincos4thpi 14975 tan4thpi 14976 sincos6thpi 14977 sincos3rdpi 14978 pigt3 14979 logltb 15009 lgsdir2lem4 15147 lgsdir2lem5 15148 |
Copyright terms: Public domain | W3C validator |