| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpri | GIF version | ||
| Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| simpri.1 | ⊢ (𝜑 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| simpri | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpri.1 | . 2 ⊢ (𝜑 ∧ 𝜓) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-ia2 107 |
| This theorem is referenced by: bi3 119 dfbi2 388 olc 713 mptxor 1444 sb4bor 1859 ordsoexmid 4614 eninl 7206 eninr 7207 pw1ne1 7348 negiso 9035 infrenegsupex 9722 xrnegiso 11617 infxrnegsupex 11618 cos01bnd 12113 cos1bnd 12114 cos2bnd 12115 sincos2sgn 12121 sin4lt0 12122 egt2lt3 12135 ssnnctlemct 12861 slotslfn 12902 strslfvd 12918 strslfv2d 12919 strslfv 12921 strslfv3 12922 strsl0 12925 setsslid 12927 setsslnid 12928 rngplusgg 13013 rngmulrg 13014 srngplusgd 13024 srngmulrd 13025 srnginvld 13026 lmodplusgd 13042 lmodscad 13043 lmodvscad 13044 ipsaddgd 13054 ipsmulrd 13055 ipsscad 13056 ipsvscad 13057 ipsipd 13058 topgrpplusgd 13074 topgrptsetd 13075 prdsex 13145 prdsvallem 13148 prdsval 13149 prdssca 13151 prdsmulr 13154 imasex 13181 imasival 13182 imasbas 13183 imasplusg 13184 imasmulr 13185 fnmgp 13728 mgpvalg 13729 mgpex 13731 mgpbasg 13732 mgpscag 13733 mgptsetg 13734 mgpdsg 13736 mgpress 13737 ring1 13865 opprvalg 13875 opprex 13879 opprsllem 13880 rmodislmod 14157 sraval 14243 sralemg 14244 srascag 14248 sravscag 14249 sraipg 14250 sraex 14252 zlmval 14433 zlmlemg 14434 zlmmulrg 14437 zlmsca 14438 zlmvscag 14439 znmul 14448 psrval 14472 fnpsr 14473 setsmsdsg 14996 cosz12 15296 sinpi 15301 sinhalfpilem 15307 coshalfpi 15313 sincosq1lem 15341 tangtx 15354 sincos4thpi 15356 tan4thpi 15357 sincos6thpi 15358 sincos3rdpi 15359 pigt3 15360 logltb 15390 lgsdir2lem4 15552 lgsdir2lem5 15553 |
| Copyright terms: Public domain | W3C validator |