Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpri | GIF version |
Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
simpri.1 | ⊢ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
simpri | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpri.1 | . 2 ⊢ (𝜑 ∧ 𝜓) | |
2 | simpr 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-ia2 106 |
This theorem is referenced by: bi3 118 dfbi2 386 olc 701 mptxor 1414 sb4bor 1823 ordsoexmid 4539 eninl 7062 eninr 7063 pw1ne1 7185 negiso 8850 infrenegsupex 9532 xrnegiso 11203 infxrnegsupex 11204 cos01bnd 11699 cos1bnd 11700 cos2bnd 11701 sincos2sgn 11706 sin4lt0 11707 egt2lt3 11720 ssnnctlemct 12379 slotslfn 12420 strslfvd 12435 strslfv2d 12436 strslfv 12438 strsl0 12442 setsslid 12444 setsslnid 12445 rngplusgg 12512 rngmulrg 12513 srngplusgd 12519 srngmulrd 12520 srnginvld 12521 lmodplusgd 12530 lmodscad 12531 lmodvscad 12532 ipsaddgd 12538 ipsmulrd 12539 ipsscad 12540 ipsvscad 12541 ipsipd 12542 topgrpplusgd 12548 topgrptsetd 12549 setsmsdsg 13130 cosz12 13351 sinpi 13356 sinhalfpilem 13362 coshalfpi 13368 sincosq1lem 13396 tangtx 13409 sincos4thpi 13411 tan4thpi 13412 sincos6thpi 13413 sincos3rdpi 13414 pigt3 13415 logltb 13445 lgsdir2lem4 13582 lgsdir2lem5 13583 |
Copyright terms: Public domain | W3C validator |