| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpri | GIF version | ||
| Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| simpri.1 | ⊢ (𝜑 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| simpri | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpri.1 | . 2 ⊢ (𝜑 ∧ 𝜓) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-ia2 107 |
| This theorem is referenced by: bi3 119 dfbi2 388 olc 712 mptxor 1435 sb4bor 1849 ordsoexmid 4598 eninl 7163 eninr 7164 pw1ne1 7296 negiso 8982 infrenegsupex 9668 xrnegiso 11427 infxrnegsupex 11428 cos01bnd 11923 cos1bnd 11924 cos2bnd 11925 sincos2sgn 11931 sin4lt0 11932 egt2lt3 11945 ssnnctlemct 12663 slotslfn 12704 strslfvd 12720 strslfv2d 12721 strslfv 12723 strsl0 12727 setsslid 12729 setsslnid 12730 rngplusgg 12814 rngmulrg 12815 srngplusgd 12825 srngmulrd 12826 srnginvld 12827 lmodplusgd 12843 lmodscad 12844 lmodvscad 12845 ipsaddgd 12855 ipsmulrd 12856 ipsscad 12857 ipsvscad 12858 ipsipd 12859 topgrpplusgd 12875 topgrptsetd 12876 prdsex 12940 imasex 12948 imasival 12949 imasbas 12950 imasplusg 12951 imasmulr 12952 fnmgp 13478 mgpvalg 13479 mgpex 13481 mgpbasg 13482 mgpscag 13483 mgptsetg 13484 mgpdsg 13486 mgpress 13487 ring1 13615 opprvalg 13625 opprex 13629 opprsllem 13630 rmodislmod 13907 sraval 13993 sralemg 13994 srascag 13998 sravscag 13999 sraipg 14000 sraex 14002 zlmval 14183 zlmlemg 14184 zlmmulrg 14187 zlmsca 14188 zlmvscag 14189 znmul 14198 psrval 14220 fnpsr 14221 setsmsdsg 14716 cosz12 15016 sinpi 15021 sinhalfpilem 15027 coshalfpi 15033 sincosq1lem 15061 tangtx 15074 sincos4thpi 15076 tan4thpi 15077 sincos6thpi 15078 sincos3rdpi 15079 pigt3 15080 logltb 15110 lgsdir2lem4 15272 lgsdir2lem5 15273 |
| Copyright terms: Public domain | W3C validator |