| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpri | GIF version | ||
| Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| simpri.1 | ⊢ (𝜑 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| simpri | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpri.1 | . 2 ⊢ (𝜑 ∧ 𝜓) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-ia2 107 |
| This theorem is referenced by: bi3 119 dfbi2 388 olc 716 mptxor 1466 sb4bor 1881 ordsoexmid 4654 eninl 7272 eninr 7273 pw1ne1 7422 negiso 9110 infrenegsupex 9797 xrnegiso 11781 infxrnegsupex 11782 cos01bnd 12277 cos1bnd 12278 cos2bnd 12279 sincos2sgn 12285 sin4lt0 12286 egt2lt3 12299 ssnnctlemct 13025 slotslfn 13066 strslfvd 13082 strslfv2d 13083 strslfv 13085 strslfv3 13086 strsl0 13089 setsslid 13091 setsslnid 13092 rngplusgg 13178 rngmulrg 13179 srngplusgd 13189 srngmulrd 13190 srnginvld 13191 lmodplusgd 13207 lmodscad 13208 lmodvscad 13209 ipsaddgd 13219 ipsmulrd 13220 ipsscad 13221 ipsvscad 13222 ipsipd 13223 topgrpplusgd 13239 topgrptsetd 13240 prdsex 13310 prdsvallem 13313 prdsval 13314 prdssca 13316 prdsmulr 13319 imasex 13346 imasival 13347 imasbas 13348 imasplusg 13349 imasmulr 13350 fnmgp 13893 mgpvalg 13894 mgpex 13896 mgpbasg 13897 mgpscag 13898 mgptsetg 13899 mgpdsg 13901 mgpress 13902 ring1 14030 opprvalg 14040 opprex 14044 opprsllem 14045 rmodislmod 14323 sraval 14409 sralemg 14410 srascag 14414 sravscag 14415 sraipg 14416 sraex 14418 zlmval 14599 zlmlemg 14600 zlmmulrg 14603 zlmsca 14604 zlmvscag 14605 znmul 14614 psrval 14638 fnpsr 14639 setsmsdsg 15162 cosz12 15462 sinpi 15467 sinhalfpilem 15473 coshalfpi 15479 sincosq1lem 15507 tangtx 15520 sincos4thpi 15522 tan4thpi 15523 sincos6thpi 15524 sincos3rdpi 15525 pigt3 15526 logltb 15556 lgsdir2lem4 15718 lgsdir2lem5 15719 |
| Copyright terms: Public domain | W3C validator |