![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpri | GIF version |
Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
simpri.1 | ⊢ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
simpri | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpri.1 | . 2 ⊢ (𝜑 ∧ 𝜓) | |
2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-ia2 107 |
This theorem is referenced by: bi3 119 dfbi2 388 olc 712 mptxor 1435 sb4bor 1846 ordsoexmid 4595 eninl 7158 eninr 7159 pw1ne1 7291 negiso 8976 infrenegsupex 9662 xrnegiso 11408 infxrnegsupex 11409 cos01bnd 11904 cos1bnd 11905 cos2bnd 11906 sincos2sgn 11912 sin4lt0 11913 egt2lt3 11926 ssnnctlemct 12606 slotslfn 12647 strslfvd 12663 strslfv2d 12664 strslfv 12666 strsl0 12670 setsslid 12672 setsslnid 12673 rngplusgg 12757 rngmulrg 12758 srngplusgd 12768 srngmulrd 12769 srnginvld 12770 lmodplusgd 12786 lmodscad 12787 lmodvscad 12788 ipsaddgd 12798 ipsmulrd 12799 ipsscad 12800 ipsvscad 12801 ipsipd 12802 topgrpplusgd 12818 topgrptsetd 12819 prdsex 12883 imasex 12891 imasival 12892 imasbas 12893 imasplusg 12894 imasmulr 12895 fnmgp 13421 mgpvalg 13422 mgpex 13424 mgpbasg 13425 mgpscag 13426 mgptsetg 13427 mgpdsg 13429 mgpress 13430 ring1 13558 opprvalg 13568 opprex 13572 opprsllem 13573 rmodislmod 13850 sraval 13936 sralemg 13937 srascag 13941 sravscag 13942 sraipg 13943 sraex 13945 zlmval 14126 zlmlemg 14127 zlmmulrg 14130 zlmsca 14131 zlmvscag 14132 znmul 14141 psrval 14163 fnpsr 14164 setsmsdsg 14659 cosz12 14956 sinpi 14961 sinhalfpilem 14967 coshalfpi 14973 sincosq1lem 15001 tangtx 15014 sincos4thpi 15016 tan4thpi 15017 sincos6thpi 15018 sincos3rdpi 15019 pigt3 15020 logltb 15050 lgsdir2lem4 15188 lgsdir2lem5 15189 |
Copyright terms: Public domain | W3C validator |