| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpri | GIF version | ||
| Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| simpri.1 | ⊢ (𝜑 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| simpri | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpri.1 | . 2 ⊢ (𝜑 ∧ 𝜓) | |
| 2 | simpr 110 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-ia2 107 |
| This theorem is referenced by: bi3 119 dfbi2 388 olc 712 mptxor 1435 sb4bor 1849 ordsoexmid 4599 eninl 7172 eninr 7173 pw1ne1 7314 negiso 9001 infrenegsupex 9687 xrnegiso 11446 infxrnegsupex 11447 cos01bnd 11942 cos1bnd 11943 cos2bnd 11944 sincos2sgn 11950 sin4lt0 11951 egt2lt3 11964 ssnnctlemct 12690 slotslfn 12731 strslfvd 12747 strslfv2d 12748 strslfv 12750 strslfv3 12751 strsl0 12754 setsslid 12756 setsslnid 12757 rngplusgg 12841 rngmulrg 12842 srngplusgd 12852 srngmulrd 12853 srnginvld 12854 lmodplusgd 12870 lmodscad 12871 lmodvscad 12872 ipsaddgd 12882 ipsmulrd 12883 ipsscad 12884 ipsvscad 12885 ipsipd 12886 topgrpplusgd 12902 topgrptsetd 12903 prdsex 12973 prdsvallem 12976 prdsval 12977 prdssca 12979 prdsmulr 12982 imasex 13009 imasival 13010 imasbas 13011 imasplusg 13012 imasmulr 13013 fnmgp 13556 mgpvalg 13557 mgpex 13559 mgpbasg 13560 mgpscag 13561 mgptsetg 13562 mgpdsg 13564 mgpress 13565 ring1 13693 opprvalg 13703 opprex 13707 opprsllem 13708 rmodislmod 13985 sraval 14071 sralemg 14072 srascag 14076 sravscag 14077 sraipg 14078 sraex 14080 zlmval 14261 zlmlemg 14262 zlmmulrg 14265 zlmsca 14266 zlmvscag 14267 znmul 14276 psrval 14298 fnpsr 14299 setsmsdsg 14802 cosz12 15102 sinpi 15107 sinhalfpilem 15113 coshalfpi 15119 sincosq1lem 15147 tangtx 15160 sincos4thpi 15162 tan4thpi 15163 sincos6thpi 15164 sincos3rdpi 15165 pigt3 15166 logltb 15196 lgsdir2lem4 15358 lgsdir2lem5 15359 |
| Copyright terms: Public domain | W3C validator |