| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mt2bi | GIF version | ||
| Description: A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) | 
| Ref | Expression | 
|---|---|
| mt2bi.1 | ⊢ 𝜑 | 
| Ref | Expression | 
|---|---|
| mt2bi | ⊢ (¬ 𝜓 ↔ (𝜓 → ¬ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mt2bi.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | a1bi 243 | . 2 ⊢ (¬ 𝜓 ↔ (𝜑 → ¬ 𝜓)) | 
| 3 | con2b 670 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (¬ 𝜓 ↔ (𝜓 → ¬ 𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |