| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtt | GIF version | ||
| Description: Modus-tollens-like theorem. (Contributed by NM, 7-Apr-2001.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mtt | ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜓 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 618 | . 2 ⊢ (¬ 𝜓 → (𝜓 → 𝜑)) | |
| 2 | con3 643 | . . 3 ⊢ ((𝜓 → 𝜑) → (¬ 𝜑 → ¬ 𝜓)) | |
| 3 | 2 | com12 30 | . 2 ⊢ (¬ 𝜑 → ((𝜓 → 𝜑) → ¬ 𝜓)) |
| 4 | 1, 3 | impbid2 143 | 1 ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜓 → 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nbn2 698 dfnot 1382 |
| Copyright terms: Public domain | W3C validator |