ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtt GIF version

Theorem mtt 675
Description: Modus-tollens-like theorem. (Contributed by NM, 7-Apr-2001.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
mtt 𝜑 → (¬ 𝜓 ↔ (𝜓𝜑)))

Proof of Theorem mtt
StepHypRef Expression
1 pm2.21 607 . 2 𝜓 → (𝜓𝜑))
2 con3 632 . . 3 ((𝜓𝜑) → (¬ 𝜑 → ¬ 𝜓))
32com12 30 . 2 𝜑 → ((𝜓𝜑) → ¬ 𝜓))
41, 3impbid2 142 1 𝜑 → (¬ 𝜓 ↔ (𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nbn2  687  dfnot  1361
  Copyright terms: Public domain W3C validator