Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtt | GIF version |
Description: Modus-tollens-like theorem. (Contributed by NM, 7-Apr-2001.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
mtt | ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 607 | . 2 ⊢ (¬ 𝜓 → (𝜓 → 𝜑)) | |
2 | con3 632 | . . 3 ⊢ ((𝜓 → 𝜑) → (¬ 𝜑 → ¬ 𝜓)) | |
3 | 2 | com12 30 | . 2 ⊢ (¬ 𝜑 → ((𝜓 → 𝜑) → ¬ 𝜓)) |
4 | 1, 3 | impbid2 142 | 1 ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜓 → 𝜑))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nbn2 687 dfnot 1361 |
Copyright terms: Public domain | W3C validator |