ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con2b GIF version

Theorem con2b 664
Description: Contraposition. Bidirectional version of con2 638. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
con2b ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))

Proof of Theorem con2b
StepHypRef Expression
1 con2 638 . 2 ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
2 con2 638 . 2 ((𝜓 → ¬ 𝜑) → (𝜑 → ¬ 𝜓))
31, 2impbii 125 1 ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  mt2bi  679  pm4.15  689  dfdif3  3237  ssconb  3260  disjsn  3645  isprm3  12072
  Copyright terms: Public domain W3C validator