ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xchbinxr GIF version

Theorem xchbinxr 687
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchbinxr.1 (𝜑 ↔ ¬ 𝜓)
xchbinxr.2 (𝜒𝜓)
Assertion
Ref Expression
xchbinxr (𝜑 ↔ ¬ 𝜒)

Proof of Theorem xchbinxr
StepHypRef Expression
1 xchbinxr.1 . 2 (𝜑 ↔ ¬ 𝜓)
2 xchbinxr.2 . . 3 (𝜒𝜓)
32bicomi 132 . 2 (𝜓𝜒)
41, 3xchbinx 686 1 (𝜑 ↔ ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  xordc1  1415  sbnv  1915  ralnex  2498  difab  3453  disjsn  3708  iindif2m  4012  reldm0  4918
  Copyright terms: Public domain W3C validator