| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xchbinxr | GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) | 
| Ref | Expression | 
|---|---|
| xchbinxr.1 | ⊢ (𝜑 ↔ ¬ 𝜓) | 
| xchbinxr.2 | ⊢ (𝜒 ↔ 𝜓) | 
| Ref | Expression | 
|---|---|
| xchbinxr | ⊢ (𝜑 ↔ ¬ 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xchbinxr.1 | . 2 ⊢ (𝜑 ↔ ¬ 𝜓) | |
| 2 | xchbinxr.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜒) | 
| 4 | 1, 3 | xchbinx 683 | 1 ⊢ (𝜑 ↔ ¬ 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: xordc1 1404 sbnv 1903 ralnex 2485 difab 3432 disjsn 3684 iindif2m 3984 reldm0 4884 | 
| Copyright terms: Public domain | W3C validator |