ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nbn3 GIF version

Theorem nbn3 695
Description: Transfer falsehood via equivalence. (Contributed by NM, 11-Sep-2006.)
Hypothesis
Ref Expression
nbn3.1 𝜑
Assertion
Ref Expression
nbn3 𝜓 ↔ (𝜓 ↔ ¬ 𝜑))

Proof of Theorem nbn3
StepHypRef Expression
1 nbn3.1 . . 3 𝜑
21notnoti 640 . 2 ¬ ¬ 𝜑
32nbn 694 1 𝜓 ↔ (𝜓 ↔ ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator