| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2false | GIF version | ||
| Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| 2false.1 | ⊢ ¬ 𝜑 |
| 2false.2 | ⊢ ¬ 𝜓 |
| Ref | Expression |
|---|---|
| 2false | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2false.1 | . . 3 ⊢ ¬ 𝜑 | |
| 2 | 1 | pm2.21i 647 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | 2false.2 | . . 3 ⊢ ¬ 𝜓 | |
| 4 | 3 | pm2.21i 647 | . 2 ⊢ (𝜓 → 𝜑) |
| 5 | 2, 4 | impbii 126 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bianfi 949 bifal 1377 dfnul2 3453 dfnul3 3454 rab0 3480 iun0 3974 0iun 3975 0xp 4744 cnv0 5074 co02 5184 0er 6635 2lgslem4 15428 bdnth 15564 bdnthALT 15565 |
| Copyright terms: Public domain | W3C validator |