ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2false GIF version

Theorem 2false 701
Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypotheses
Ref Expression
2false.1 ¬ 𝜑
2false.2 ¬ 𝜓
Assertion
Ref Expression
2false (𝜑𝜓)

Proof of Theorem 2false
StepHypRef Expression
1 2false.1 . . 3 ¬ 𝜑
21pm2.21i 646 . 2 (𝜑𝜓)
3 2false.2 . . 3 ¬ 𝜓
43pm2.21i 646 . 2 (𝜓𝜑)
52, 4impbii 126 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-in2 615
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bianfi  947  bifal  1366  dfnul2  3426  dfnul3  3427  rab0  3453  iun0  3945  0iun  3946  0xp  4708  cnv0  5034  co02  5144  0er  6571  bdnth  14671  bdnthALT  14672
  Copyright terms: Public domain W3C validator