ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2false GIF version

Theorem 2false 702
Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypotheses
Ref Expression
2false.1 ¬ 𝜑
2false.2 ¬ 𝜓
Assertion
Ref Expression
2false (𝜑𝜓)

Proof of Theorem 2false
StepHypRef Expression
1 2false.1 . . 3 ¬ 𝜑
21pm2.21i 647 . 2 (𝜑𝜓)
3 2false.2 . . 3 ¬ 𝜓
43pm2.21i 647 . 2 (𝜓𝜑)
52, 4impbii 126 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bianfi  949  bifal  1377  dfnul2  3448  dfnul3  3449  rab0  3475  iun0  3969  0iun  3970  0xp  4739  cnv0  5069  co02  5179  0er  6621  bdnth  15326  bdnthALT  15327
  Copyright terms: Public domain W3C validator