ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2false GIF version

Theorem 2false 696
Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypotheses
Ref Expression
2false.1 ¬ 𝜑
2false.2 ¬ 𝜓
Assertion
Ref Expression
2false (𝜑𝜓)

Proof of Theorem 2false
StepHypRef Expression
1 2false.1 . . 3 ¬ 𝜑
21pm2.21i 641 . 2 (𝜑𝜓)
3 2false.2 . . 3 ¬ 𝜓
43pm2.21i 641 . 2 (𝜓𝜑)
52, 4impbii 125 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bianfi  942  bifal  1361  dfnul2  3416  dfnul3  3417  rab0  3443  iun0  3929  0iun  3930  0xp  4691  cnv0  5014  co02  5124  0er  6547  bdnth  13869  bdnthALT  13870
  Copyright terms: Public domain W3C validator