Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2false | GIF version |
Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
2false.1 | ⊢ ¬ 𝜑 |
2false.2 | ⊢ ¬ 𝜓 |
Ref | Expression |
---|---|
2false | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2false.1 | . . 3 ⊢ ¬ 𝜑 | |
2 | 1 | pm2.21i 641 | . 2 ⊢ (𝜑 → 𝜓) |
3 | 2false.2 | . . 3 ⊢ ¬ 𝜓 | |
4 | 3 | pm2.21i 641 | . 2 ⊢ (𝜓 → 𝜑) |
5 | 2, 4 | impbii 125 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 ax-in2 610 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bianfi 942 bifal 1361 dfnul2 3416 dfnul3 3417 rab0 3443 iun0 3929 0iun 3930 0xp 4691 cnv0 5014 co02 5124 0er 6547 bdnth 13869 bdnthALT 13870 |
Copyright terms: Public domain | W3C validator |