![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2false | GIF version |
Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
2false.1 | ⊢ ¬ 𝜑 |
2false.2 | ⊢ ¬ 𝜓 |
Ref | Expression |
---|---|
2false | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2false.1 | . . 3 ⊢ ¬ 𝜑 | |
2 | 1 | pm2.21i 646 | . 2 ⊢ (𝜑 → 𝜓) |
3 | 2false.2 | . . 3 ⊢ ¬ 𝜓 | |
4 | 3 | pm2.21i 646 | . 2 ⊢ (𝜓 → 𝜑) |
5 | 2, 4 | impbii 126 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bianfi 947 bifal 1366 dfnul2 3426 dfnul3 3427 rab0 3453 iun0 3945 0iun 3946 0xp 4708 cnv0 5034 co02 5144 0er 6571 bdnth 14671 bdnthALT 14672 |
Copyright terms: Public domain | W3C validator |