ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notnoti GIF version

Theorem notnoti 640
Description: Infer double negation. (Contributed by NM, 27-Feb-2008.)
Hypothesis
Ref Expression
negbi.1 𝜑
Assertion
Ref Expression
notnoti ¬ ¬ 𝜑

Proof of Theorem notnoti
StepHypRef Expression
1 negbi.1 . 2 𝜑
2 notnot 624 . 2 (𝜑 → ¬ ¬ 𝜑)
31, 2ax-mp 5 1 ¬ ¬ 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 609  ax-in2 610
This theorem is referenced by:  nbn3  695  fal  1355  ax-9  1524  neirr  2349  dfnul2  3416  dfnul3  3417  rab0  3442
  Copyright terms: Public domain W3C validator