Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nbn | GIF version |
Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
Ref | Expression |
---|---|
nbn.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
nbn | ⊢ (¬ 𝜓 ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbn.1 | . . 3 ⊢ ¬ 𝜑 | |
2 | bibif 688 | . . 3 ⊢ (¬ 𝜑 → ((𝜓 ↔ 𝜑) ↔ ¬ 𝜓)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜓 ↔ 𝜑) ↔ ¬ 𝜓) |
4 | 3 | bicomi 131 | 1 ⊢ (¬ 𝜓 ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nbn3 690 nbfal 1354 n0rf 3421 eq0 3427 disj 3457 dm0rn0 4821 reldm0 4822 |
Copyright terms: Public domain | W3C validator |