ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.521dcALT GIF version

Theorem pm2.521dcALT 860
Description: Alternate proof of pm2.521dc 859. (Contributed by Jim Kingdon, 5-May-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pm2.521dcALT (DECID 𝜑 → (¬ (𝜑𝜓) → (𝜓𝜑)))

Proof of Theorem pm2.521dcALT
StepHypRef Expression
1 pm2.52 646 . 2 (¬ (𝜑𝜓) → (¬ 𝜑 → ¬ 𝜓))
2 condc 843 . 2 (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑)))
31, 2syl5 32 1 (DECID 𝜑 → (¬ (𝜑𝜓) → (𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator