Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.65d | GIF version |
Description: Deduction for proof by contradiction. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 26-May-2013.) |
Ref | Expression |
---|---|
pm2.65d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
pm2.65d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
Ref | Expression |
---|---|
pm2.65d | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
2 | pm2.65d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | nsyld 638 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
4 | 3 | pm2.01d 608 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 |
This theorem is referenced by: pm2.65da 651 mtod 653 |
Copyright terms: Public domain | W3C validator |