ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.65d GIF version

Theorem pm2.65d 650
Description: Deduction for proof by contradiction. (Contributed by NM, 26-Jun-1994.) (Proof shortened by Wolf Lammen, 26-May-2013.)
Hypotheses
Ref Expression
pm2.65d.1 (𝜑 → (𝜓𝜒))
pm2.65d.2 (𝜑 → (𝜓 → ¬ 𝜒))
Assertion
Ref Expression
pm2.65d (𝜑 → ¬ 𝜓)

Proof of Theorem pm2.65d
StepHypRef Expression
1 pm2.65d.2 . . 3 (𝜑 → (𝜓 → ¬ 𝜒))
2 pm2.65d.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2nsyld 638 . 2 (𝜑 → (𝜓 → ¬ 𝜓))
43pm2.01d 608 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 604  ax-in2 605
This theorem is referenced by:  pm2.65da  651  mtod  653
  Copyright terms: Public domain W3C validator