Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtod | GIF version |
Description: Modus tollens deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mtod.1 | ⊢ (𝜑 → ¬ 𝜒) |
mtod.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtod | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtod.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | mtod.1 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
3 | 2 | a1d 22 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
4 | 1, 3 | pm2.65d 650 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 |
This theorem is referenced by: mtoi 654 mtand 655 mtbid 662 mtbird 663 pwntru 4177 po2nr 4286 po3nr 4287 sotricim 4300 elirr 4517 ordn2lp 4521 en2lp 4530 tfr1onlemsucaccv 6305 tfrcllemsucaccv 6318 nndomo 6826 fnfi 6898 difinfsnlem 7060 cauappcvgprlemladdru 7593 cauappcvgprlemladdrl 7594 caucvgprlemladdrl 7615 caucvgprprlemaddq 7645 msqge0 8510 mulge0 8513 squeeze0 8795 elnn0z 9200 fznlem 9972 frec2uzf1od 10337 facndiv 10648 sumrbdclem 11314 prodrbdclem 11508 alzdvds 11788 fzm1ndvds 11790 fzo0dvdseq 11791 rpdvds 12027 nonsq 12135 prmdiv 12163 odzdvds 12173 pcprendvds 12218 pcprendvds2 12219 pcpremul 12221 pcdvdsb 12247 pockthlem 12282 1arith 12293 ennnfonelemim 12353 bldisj 13001 lgsdilem2 13537 lgsne0 13539 bj-nnen2lp 13796 pwtrufal 13837 refeq 13867 |
Copyright terms: Public domain | W3C validator |