Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtod | GIF version |
Description: Modus tollens deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mtod.1 | ⊢ (𝜑 → ¬ 𝜒) |
mtod.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtod | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtod.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | mtod.1 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
3 | 2 | a1d 22 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
4 | 1, 3 | pm2.65d 655 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 609 ax-in2 610 |
This theorem is referenced by: mtoi 659 mtand 660 mtbid 667 mtbird 668 pwntru 4185 po2nr 4294 po3nr 4295 sotricim 4308 elirr 4525 ordn2lp 4529 en2lp 4538 tfr1onlemsucaccv 6320 tfrcllemsucaccv 6333 nndomo 6842 fnfi 6914 difinfsnlem 7076 nninfwlpoimlemginf 7152 cauappcvgprlemladdru 7618 cauappcvgprlemladdrl 7619 caucvgprlemladdrl 7640 caucvgprprlemaddq 7670 msqge0 8535 mulge0 8538 squeeze0 8820 elnn0z 9225 fznlem 9997 frec2uzf1od 10362 facndiv 10673 sumrbdclem 11340 prodrbdclem 11534 alzdvds 11814 fzm1ndvds 11816 fzo0dvdseq 11817 rpdvds 12053 nonsq 12161 prmdiv 12189 odzdvds 12199 pcprendvds 12244 pcprendvds2 12245 pcpremul 12247 pcdvdsb 12273 pockthlem 12308 1arith 12319 ennnfonelemim 12379 bldisj 13195 lgsdilem2 13731 lgsne0 13733 bj-nnen2lp 13989 pwtrufal 14030 refeq 14060 |
Copyright terms: Public domain | W3C validator |