![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtod | GIF version |
Description: Modus tollens deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mtod.1 | ⊢ (𝜑 → ¬ 𝜒) |
mtod.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtod | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtod.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | mtod.1 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
3 | 2 | a1d 22 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
4 | 1, 3 | pm2.65d 660 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: mtoi 664 mtand 665 mtbid 672 mtbird 673 pwntru 4200 po2nr 4310 po3nr 4311 sotricim 4324 elirr 4541 ordn2lp 4545 en2lp 4554 tfr1onlemsucaccv 6342 tfrcllemsucaccv 6355 nndomo 6864 fnfi 6936 difinfsnlem 7098 nninfwlpoimlemginf 7174 2omotaplemap 7256 cauappcvgprlemladdru 7655 cauappcvgprlemladdrl 7656 caucvgprlemladdrl 7677 caucvgprprlemaddq 7707 msqge0 8573 mulge0 8576 squeeze0 8861 elnn0z 9266 fznlem 10041 frec2uzf1od 10406 facndiv 10719 sumrbdclem 11385 prodrbdclem 11579 alzdvds 11860 fzm1ndvds 11862 fzo0dvdseq 11863 rpdvds 12099 nonsq 12207 prmdiv 12235 odzdvds 12245 pcprendvds 12290 pcprendvds2 12291 pcpremul 12293 pcdvdsb 12319 pockthlem 12354 1arith 12365 ennnfonelemim 12425 bldisj 13904 lgsdilem2 14440 lgsne0 14442 lgseisenlem1 14453 lgseisenlem2 14454 bj-nnen2lp 14709 pwtrufal 14750 refeq 14779 |
Copyright terms: Public domain | W3C validator |