![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtod | GIF version |
Description: Modus tollens deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
mtod.1 | ⊢ (𝜑 → ¬ 𝜒) |
mtod.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mtod | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtod.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | mtod.1 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
3 | 2 | a1d 22 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
4 | 1, 3 | pm2.65d 660 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: mtoi 664 mtand 665 mtbid 672 mtbird 673 pwntru 4199 po2nr 4309 po3nr 4310 sotricim 4323 elirr 4540 ordn2lp 4544 en2lp 4553 tfr1onlemsucaccv 6341 tfrcllemsucaccv 6354 nndomo 6863 fnfi 6935 difinfsnlem 7097 nninfwlpoimlemginf 7173 2omotaplemap 7255 cauappcvgprlemladdru 7654 cauappcvgprlemladdrl 7655 caucvgprlemladdrl 7676 caucvgprprlemaddq 7706 msqge0 8572 mulge0 8575 squeeze0 8860 elnn0z 9265 fznlem 10040 frec2uzf1od 10405 facndiv 10718 sumrbdclem 11384 prodrbdclem 11578 alzdvds 11859 fzm1ndvds 11861 fzo0dvdseq 11862 rpdvds 12098 nonsq 12206 prmdiv 12234 odzdvds 12244 pcprendvds 12289 pcprendvds2 12290 pcpremul 12292 pcdvdsb 12318 pockthlem 12353 1arith 12364 ennnfonelemim 12424 bldisj 13871 lgsdilem2 14407 lgsne0 14409 lgseisenlem1 14420 lgseisenlem2 14421 bj-nnen2lp 14676 pwtrufal 14717 refeq 14746 |
Copyright terms: Public domain | W3C validator |