![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.65da | GIF version |
Description: Deduction for proof by contradiction. (Contributed by NM, 12-Jun-2014.) |
Ref | Expression |
---|---|
pm2.65da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
pm2.65da.2 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) |
Ref | Expression |
---|---|
pm2.65da | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | pm2.65da.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) | |
4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
5 | 2, 4 | pm2.65d 661 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem is referenced by: condandc 882 nelrdva 2967 ifnefals 3599 exmid01 4227 frirrg 4381 fimax2gtrilemstep 6956 unsnfidcex 6976 unsnfidcel 6977 difinfsn 7159 nninfisollemne 7190 fodju0 7206 nninfwlpoimlemginf 7235 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 exmidapne 7320 ltntri 8147 prodgt0 8871 ixxdisj 9969 icodisj 10058 iseqf1olemnab 10572 seq3f1olemqsumk 10583 ltabs 11231 divalglemnqt 12061 zsupcllemstep 12082 infssuzex 12086 suprzubdc 12089 sqnprm 12274 znnen 12555 dedekindeulemuub 14771 dedekindeulemlu 14775 dedekindicclemuub 14780 dedekindicclemlu 14784 ivthinclemlopn 14790 ivthinclemuopn 14792 limcimo 14819 cnplimclemle 14822 pilem3 14918 logbgcd1irraplemexp 15100 gausslemma2dlem1f1o 15176 pwtrufal 15488 pwle2 15489 peano3nninf 15497 nninffeq 15510 refeq 15518 trilpolemeq1 15530 taupi 15563 |
Copyright terms: Public domain | W3C validator |