![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.65da | GIF version |
Description: Deduction for proof by contradiction. (Contributed by NM, 12-Jun-2014.) |
Ref | Expression |
---|---|
pm2.65da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
pm2.65da.2 | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) |
Ref | Expression |
---|---|
pm2.65da | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | pm2.65da.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) | |
4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
5 | 2, 4 | pm2.65d 661 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem is referenced by: condandc 882 nelrdva 2956 exmid01 4210 frirrg 4362 fimax2gtrilemstep 6914 unsnfidcex 6933 unsnfidcel 6934 difinfsn 7113 nninfisollemne 7143 fodju0 7159 nninfwlpoimlemginf 7188 exmidfodomrlemr 7215 exmidfodomrlemrALT 7216 exmidapne 7273 ltntri 8099 prodgt0 8823 ixxdisj 9917 icodisj 10006 iseqf1olemnab 10502 seq3f1olemqsumk 10513 ltabs 11110 divalglemnqt 11939 zsupcllemstep 11960 infssuzex 11964 suprzubdc 11967 sqnprm 12150 znnen 12413 dedekindeulemuub 14448 dedekindeulemlu 14452 dedekindicclemuub 14457 dedekindicclemlu 14461 ivthinclemlopn 14467 ivthinclemuopn 14469 limcimo 14487 cnplimclemle 14490 pilem3 14557 logbgcd1irraplemexp 14739 pwtrufal 15101 pwle2 15102 peano3nninf 15110 nninffeq 15123 refeq 15130 trilpolemeq1 15142 taupi 15175 |
Copyright terms: Public domain | W3C validator |