ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.01d GIF version

Theorem pm2.01d 613
Description: Deduction based on reductio ad absurdum. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypothesis
Ref Expression
pm2.01d.1 (𝜑 → (𝜓 → ¬ 𝜓))
Assertion
Ref Expression
pm2.01d (𝜑 → ¬ 𝜓)

Proof of Theorem pm2.01d
StepHypRef Expression
1 pm2.01d.1 . 2 (𝜑 → (𝜓 → ¬ 𝜓))
2 pm2.01 611 . 2 ((𝜓 → ¬ 𝜓) → ¬ 𝜓)
31, 2syl 14 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 609
This theorem is referenced by:  pm2.01da  631  pm2.65d  655  pm5.19  701  mtord  778  swopo  4291  rennim  10966  absle  11053  bj-nnclavius  13772
  Copyright terms: Public domain W3C validator