ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.34 GIF version

Theorem pm3.34 344
Description: Theorem *3.34 (Syll) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.34 (((𝜓𝜒) ∧ (𝜑𝜓)) → (𝜑𝜒))

Proof of Theorem pm3.34
StepHypRef Expression
1 imim2 55 . 2 ((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒)))
21imp 123 1 (((𝜓𝜒) ∧ (𝜑𝜓)) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by:  algcvgblem  11897
  Copyright terms: Public domain W3C validator