ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imim2 GIF version

Theorem imim2 55
Description: A closed form of syllogism (see syl 14). Theorem *2.05 of [WhiteheadRussell] p. 100. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Sep-2012.)
Assertion
Ref Expression
imim2 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))

Proof of Theorem imim2
StepHypRef Expression
1 id 19 . 2 ((𝜑𝜓) → (𝜑𝜓))
21imim2d 54 1 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  syldd  67  pm3.34  344  spimth  1728  spsbim  1836  bj-stim  13781  elabgft1  13813  bj-rspgt  13821  bj-findis  14014
  Copyright terms: Public domain W3C validator