Proof of Theorem algcvgblem
| Step | Hyp | Ref
| Expression |
| 1 | | nn0z 9346 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 2 | | 0z 9337 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
| 3 | | zdceq 9401 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) |
| 4 | 1, 2, 3 | sylancl 413 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ DECID 𝑁 = 0) |
| 5 | 4 | dcned 2373 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ DECID 𝑁 ≠ 0) |
| 6 | | imordc 898 |
. . . . . . 7
⊢
(DECID 𝑁 ≠ 0 → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀))) |
| 7 | 5, 6 | syl 14 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 ≠ 0 →
𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀))) |
| 8 | 7 | adantl 277 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀))) |
| 9 | | nn0z 9346 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℤ) |
| 10 | | zltnle 9372 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℤ ∧ 𝑀
∈ ℤ) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0)) |
| 11 | 2, 9, 10 | sylancr 414 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ0
→ (0 < 𝑀 ↔
¬ 𝑀 ≤
0)) |
| 12 | 11 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0)) |
| 13 | | nn0le0eq0 9277 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ0
→ (𝑀 ≤ 0 ↔
𝑀 = 0)) |
| 14 | 13 | notbid 668 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ0
→ (¬ 𝑀 ≤ 0
↔ ¬ 𝑀 =
0)) |
| 15 | 14 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0)) |
| 16 | 12, 15 | bitrd 188 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 = 0)) |
| 17 | | df-ne 2368 |
. . . . . . . . . . 11
⊢ (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0) |
| 18 | 16, 17 | bitr4di 198 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (0 < 𝑀 ↔ 𝑀 ≠ 0)) |
| 19 | 18 | anbi2d 464 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 0 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0))) |
| 20 | 1 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝑁 ∈ ℤ) |
| 21 | 20, 2, 3 | sylancl 413 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → DECID 𝑁 = 0) |
| 22 | | nnedc 2372 |
. . . . . . . . . . . . 13
⊢
(DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) |
| 23 | 21, 22 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0)) |
| 24 | | breq1 4036 |
. . . . . . . . . . . 12
⊢ (𝑁 = 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀)) |
| 25 | 23, 24 | biimtrdi 163 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (¬ 𝑁 ≠ 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀))) |
| 26 | | biimpr 130 |
. . . . . . . . . . 11
⊢ ((𝑁 < 𝑀 ↔ 0 < 𝑀) → (0 < 𝑀 → 𝑁 < 𝑀)) |
| 27 | 25, 26 | syl6 33 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (¬ 𝑁 ≠ 0 → (0 < 𝑀 → 𝑁 < 𝑀))) |
| 28 | 27 | impd 254 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 0 < 𝑀) → 𝑁 < 𝑀)) |
| 29 | 19, 28 | sylbird 170 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0) → 𝑁 < 𝑀)) |
| 30 | 29 | expd 258 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀))) |
| 31 | | ax-1 6 |
. . . . . . 7
⊢ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) |
| 32 | 30, 31 | jctir 313 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ∧ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀)))) |
| 33 | | jaob 711 |
. . . . . 6
⊢ (((¬
𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ↔ ((¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ∧ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀)))) |
| 34 | 32, 33 | sylibr 134 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀))) |
| 35 | 8, 34 | sylbid 150 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀))) |
| 36 | | nn0ge0 9274 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ 0 ≤ 𝑁) |
| 37 | 36 | adantl 277 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 0 ≤ 𝑁) |
| 38 | | nn0re 9258 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
| 39 | | nn0re 9258 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℝ) |
| 40 | | 0re 8026 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
| 41 | | lelttr 8115 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ 𝑁
∈ ℝ ∧ 𝑀
∈ ℝ) → ((0 ≤ 𝑁 ∧ 𝑁 < 𝑀) → 0 < 𝑀)) |
| 42 | 40, 41 | mp3an1 1335 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤
𝑁 ∧ 𝑁 < 𝑀) → 0 < 𝑀)) |
| 43 | 38, 39, 42 | syl2anr 290 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((0 ≤ 𝑁 ∧ 𝑁 < 𝑀) → 0 < 𝑀)) |
| 44 | 37, 43 | mpand 429 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 < 𝑀 → 0 < 𝑀)) |
| 45 | 44, 18 | sylibd 149 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑁 < 𝑀 → 𝑀 ≠ 0)) |
| 46 | 45 | imim2d 54 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑁 ≠ 0 → 𝑀 ≠ 0))) |
| 47 | 35, 46 | jcad 307 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0)))) |
| 48 | | pm3.34 346 |
. . 3
⊢ (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0)) → (𝑁 ≠ 0 → 𝑁 < 𝑀)) |
| 49 | 47, 48 | impbid1 142 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0)))) |
| 50 | | con34bdc 872 |
. . . . 5
⊢
(DECID 𝑁 = 0 → ((𝑀 = 0 → 𝑁 = 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0))) |
| 51 | 21, 50 | syl 14 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑀 = 0 → 𝑁 = 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0))) |
| 52 | | df-ne 2368 |
. . . . 5
⊢ (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0) |
| 53 | 52, 17 | imbi12i 239 |
. . . 4
⊢ ((𝑁 ≠ 0 → 𝑀 ≠ 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0)) |
| 54 | 51, 53 | bitr4di 198 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑀 = 0 → 𝑁 = 0) ↔ (𝑁 ≠ 0 → 𝑀 ≠ 0))) |
| 55 | 54 | anbi2d 464 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0)) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0)))) |
| 56 | 49, 55 | bitr4d 191 |
1
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0)))) |