ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvgblem GIF version

Theorem algcvgblem 12579
Description: Lemma for algcvgb 12580. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
algcvgblem ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0))))

Proof of Theorem algcvgblem
StepHypRef Expression
1 nn0z 9474 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 0z 9465 . . . . . . . . 9 0 ∈ ℤ
3 zdceq 9530 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
41, 2, 3sylancl 413 . . . . . . . 8 (𝑁 ∈ ℕ0DECID 𝑁 = 0)
54dcned 2406 . . . . . . 7 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 0)
6 imordc 902 . . . . . . 7 (DECID 𝑁 ≠ 0 → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀)))
75, 6syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀)))
87adantl 277 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀)))
9 nn0z 9474 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
10 zltnle 9500 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
112, 9, 10sylancr 414 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
1211adantr 276 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
13 nn0le0eq0 9405 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (𝑀 ≤ 0 ↔ 𝑀 = 0))
1413notbid 671 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0))
1514adantr 276 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0))
1612, 15bitrd 188 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 = 0))
17 df-ne 2401 . . . . . . . . . . 11 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
1816, 17bitr4di 198 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀𝑀 ≠ 0))
1918anbi2d 464 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 0 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0)))
201adantl 277 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
2120, 2, 3sylancl 413 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → DECID 𝑁 = 0)
22 nnedc 2405 . . . . . . . . . . . . 13 (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
2321, 22syl 14 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
24 breq1 4086 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀))
2523, 24biimtrdi 163 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀)))
26 biimpr 130 . . . . . . . . . . 11 ((𝑁 < 𝑀 ↔ 0 < 𝑀) → (0 < 𝑀𝑁 < 𝑀))
2725, 26syl6 33 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 → (0 < 𝑀𝑁 < 𝑀)))
2827impd 254 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 0 < 𝑀) → 𝑁 < 𝑀))
2919, 28sylbird 170 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0) → 𝑁 < 𝑀))
3029expd 258 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
31 ax-1 6 . . . . . . 7 (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))
3230, 31jctir 313 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ∧ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))))
33 jaob 715 . . . . . 6 (((¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ↔ ((¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ∧ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))))
3432, 33sylibr 134 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
358, 34sylbid 150 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
36 nn0ge0 9402 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
3736adantl 277 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝑁)
38 nn0re 9386 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
39 nn0re 9386 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
40 0re 8154 . . . . . . . . 9 0 ∈ ℝ
41 lelttr 8243 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
4240, 41mp3an1 1358 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
4338, 39, 42syl2anr 290 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
4437, 43mpand 429 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑀 → 0 < 𝑀))
4544, 18sylibd 149 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑀𝑀 ≠ 0))
4645imim2d 54 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑁 ≠ 0 → 𝑀 ≠ 0)))
4735, 46jcad 307 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
48 pm3.34 346 . . 3 (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0)) → (𝑁 ≠ 0 → 𝑁 < 𝑀))
4947, 48impbid1 142 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
50 con34bdc 876 . . . . 5 (DECID 𝑁 = 0 → ((𝑀 = 0 → 𝑁 = 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0)))
5121, 50syl 14 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 = 0 → 𝑁 = 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0)))
52 df-ne 2401 . . . . 5 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
5352, 17imbi12i 239 . . . 4 ((𝑁 ≠ 0 → 𝑀 ≠ 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0))
5451, 53bitr4di 198 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 = 0 → 𝑁 = 0) ↔ (𝑁 ≠ 0 → 𝑀 ≠ 0)))
5554anbi2d 464 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0)) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
5649, 55bitr4d 191 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wne 2400   class class class wbr 4083  cr 8006  0cc0 8007   < clt 8189  cle 8190  0cn0 9377  cz 9454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455
This theorem is referenced by:  algcvgb  12580
  Copyright terms: Public domain W3C validator