ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvgblem GIF version

Theorem algcvgblem 12032
Description: Lemma for algcvgb 12033. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
algcvgblem ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0))))

Proof of Theorem algcvgblem
StepHypRef Expression
1 nn0z 9262 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 0z 9253 . . . . . . . . 9 0 ∈ ℤ
3 zdceq 9317 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
41, 2, 3sylancl 413 . . . . . . . 8 (𝑁 ∈ ℕ0DECID 𝑁 = 0)
54dcned 2353 . . . . . . 7 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 0)
6 imordc 897 . . . . . . 7 (DECID 𝑁 ≠ 0 → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀)))
75, 6syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀)))
87adantl 277 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀)))
9 nn0z 9262 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
10 zltnle 9288 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
112, 9, 10sylancr 414 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
1211adantr 276 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
13 nn0le0eq0 9193 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (𝑀 ≤ 0 ↔ 𝑀 = 0))
1413notbid 667 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0))
1514adantr 276 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0))
1612, 15bitrd 188 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 = 0))
17 df-ne 2348 . . . . . . . . . . 11 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
1816, 17bitr4di 198 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀𝑀 ≠ 0))
1918anbi2d 464 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 0 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0)))
201adantl 277 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
2120, 2, 3sylancl 413 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → DECID 𝑁 = 0)
22 nnedc 2352 . . . . . . . . . . . . 13 (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
2321, 22syl 14 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
24 breq1 4003 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀))
2523, 24syl6bi 163 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀)))
26 biimpr 130 . . . . . . . . . . 11 ((𝑁 < 𝑀 ↔ 0 < 𝑀) → (0 < 𝑀𝑁 < 𝑀))
2725, 26syl6 33 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 → (0 < 𝑀𝑁 < 𝑀)))
2827impd 254 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 0 < 𝑀) → 𝑁 < 𝑀))
2919, 28sylbird 170 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0) → 𝑁 < 𝑀))
3029expd 258 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
31 ax-1 6 . . . . . . 7 (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))
3230, 31jctir 313 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ∧ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))))
33 jaob 710 . . . . . 6 (((¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ↔ ((¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ∧ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))))
3432, 33sylibr 134 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
358, 34sylbid 150 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
36 nn0ge0 9190 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
3736adantl 277 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝑁)
38 nn0re 9174 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
39 nn0re 9174 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
40 0re 7948 . . . . . . . . 9 0 ∈ ℝ
41 lelttr 8036 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
4240, 41mp3an1 1324 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
4338, 39, 42syl2anr 290 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
4437, 43mpand 429 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑀 → 0 < 𝑀))
4544, 18sylibd 149 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑀𝑀 ≠ 0))
4645imim2d 54 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑁 ≠ 0 → 𝑀 ≠ 0)))
4735, 46jcad 307 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
48 pm3.34 346 . . 3 (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0)) → (𝑁 ≠ 0 → 𝑁 < 𝑀))
4947, 48impbid1 142 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
50 con34bdc 871 . . . . 5 (DECID 𝑁 = 0 → ((𝑀 = 0 → 𝑁 = 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0)))
5121, 50syl 14 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 = 0 → 𝑁 = 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0)))
52 df-ne 2348 . . . . 5 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
5352, 17imbi12i 239 . . . 4 ((𝑁 ≠ 0 → 𝑀 ≠ 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0))
5451, 53bitr4di 198 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 = 0 → 𝑁 = 0) ↔ (𝑁 ≠ 0 → 𝑀 ≠ 0)))
5554anbi2d 464 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0)) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
5649, 55bitr4d 191 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4000  cr 7801  0cc0 7802   < clt 7982  cle 7983  0cn0 9165  cz 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243
This theorem is referenced by:  algcvgb  12033
  Copyright terms: Public domain W3C validator