| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm3.35 | GIF version | ||
| Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. (Contributed by NM, 14-Dec-2002.) |
| Ref | Expression |
|---|---|
| pm3.35 | ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 40 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | 1 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: xordc1 1404 19.35-1 1638 ax9o 1712 sbequ8 1861 r19.29af2 2637 r19.29vva 2642 r19.35-1 2647 intab 3903 |
| Copyright terms: Public domain | W3C validator |