Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm3.35 | GIF version |
Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. (Contributed by NM, 14-Dec-2002.) |
Ref | Expression |
---|---|
pm3.35 | ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 40 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | imp 123 | 1 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem is referenced by: xordc1 1383 19.35-1 1612 ax9o 1686 sbequ8 1835 r19.29af2 2606 r19.29vva 2611 r19.35-1 2616 intab 3853 |
Copyright terms: Public domain | W3C validator |