ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.8 GIF version

Theorem pm4.8 697
Description: Theorem *4.8 of [WhiteheadRussell] p. 122. This one holds for all propositions, but compare with pm4.81dc 898 which requires a decidability condition. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.8 ((𝜑 → ¬ 𝜑) ↔ ¬ 𝜑)

Proof of Theorem pm4.8
StepHypRef Expression
1 pm2.01 606 . 2 ((𝜑 → ¬ 𝜑) → ¬ 𝜑)
2 ax-1 6 . 2 𝜑 → (𝜑 → ¬ 𝜑))
31, 2impbii 125 1 ((𝜑 → ¬ 𝜑) ↔ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107  ax-in1 604
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator