Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.19 | GIF version |
Description: Theorem *5.19 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.19 | ⊢ ¬ (𝜑 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp 117 | . . . 4 ⊢ ((𝜑 ↔ ¬ 𝜑) → (𝜑 → ¬ 𝜑)) | |
2 | 1 | pm2.01d 608 | . . 3 ⊢ ((𝜑 ↔ ¬ 𝜑) → ¬ 𝜑) |
3 | id 19 | . . 3 ⊢ ((𝜑 ↔ ¬ 𝜑) → (𝜑 ↔ ¬ 𝜑)) | |
4 | 2, 3 | mpbird 166 | . 2 ⊢ ((𝜑 ↔ ¬ 𝜑) → 𝜑) |
5 | 4, 2 | pm2.65i 629 | 1 ⊢ ¬ (𝜑 ↔ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.16 818 pclem6 1364 pm5.18im 1375 ru 2950 canth 5796 exmidonfinlem 7149 |
Copyright terms: Public domain | W3C validator |