Home Intuitionistic Logic ExplorerTheorem List (p. 8 of 134) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 701-800   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremorc 701 Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.)
(𝜑 → (𝜑𝜓))

Theorempm2.67-2 702 Slight generalization of Theorem *2.67 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 9-Dec-2012.)
(((𝜑𝜒) → 𝜓) → (𝜑𝜓))

Theoremoibabs 703 Absorption of disjunction into equivalence. (Contributed by NM, 6-Aug-1995.) (Proof shortened by Wolf Lammen, 3-Nov-2013.)
(((𝜑𝜓) → (𝜑𝜓)) ↔ (𝜑𝜓))

Theorempm3.44 704 Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
(((𝜓𝜑) ∧ (𝜒𝜑)) → ((𝜓𝜒) → 𝜑))

Theoremjaoi 705 Inference disjoining the antecedents of two implications. (Contributed by NM, 5-Apr-1994.) (Revised by NM, 31-Jan-2015.)
(𝜑𝜓)    &   (𝜒𝜓)       ((𝜑𝜒) → 𝜓)

Theoremjaod 706 Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) (Revised by NM, 4-Apr-2013.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜃𝜒))       (𝜑 → ((𝜓𝜃) → 𝜒))

Theoremmpjaod 707 Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜃𝜒))    &   (𝜑 → (𝜓𝜃))       (𝜑𝜒)

Theoremjaao 708 Inference conjoining and disjoining the antecedents of two implications. (Contributed by NM, 30-Sep-1999.)
(𝜑 → (𝜓𝜒))    &   (𝜃 → (𝜏𝜒))       ((𝜑𝜃) → ((𝜓𝜏) → 𝜒))

Theoremjaoa 709 Inference disjoining and conjoining the antecedents of two implications. (Contributed by Stefan Allan, 1-Nov-2008.)
(𝜑 → (𝜓𝜒))    &   (𝜃 → (𝜏𝜒))       ((𝜑𝜃) → ((𝜓𝜏) → 𝜒))

Theoremimorr 710 Implication in terms of disjunction. One direction of theorem *4.6 of [WhiteheadRussell] p. 120. The converse holds for decidable propositions, as seen at imordc 882. (Contributed by Jim Kingdon, 21-Jul-2018.)
((¬ 𝜑𝜓) → (𝜑𝜓))

Theorempm2.53 711 Theorem *2.53 of [WhiteheadRussell] p. 107. This holds intuitionistically, although its converse does not (see pm2.54dc 876). (Contributed by NM, 3-Jan-2005.) (Revised by NM, 31-Jan-2015.)
((𝜑𝜓) → (¬ 𝜑𝜓))

Theoremori 712 Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)
(𝜑𝜓)       𝜑𝜓)

Theoremord 713 Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)
(𝜑 → (𝜓𝜒))       (𝜑 → (¬ 𝜓𝜒))

Theoremorel1 714 Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.)
𝜑 → ((𝜑𝜓) → 𝜓))

Theoremorel2 715 Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.)
𝜑 → ((𝜓𝜑) → 𝜓))

Theorempm1.4 716 Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 15-Nov-2012.)
((𝜑𝜓) → (𝜓𝜑))

Theoremorcom 717 Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.)
((𝜑𝜓) ↔ (𝜓𝜑))

Theoremorcomd 718 Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜒𝜓))

Theoremorcoms 719 Commutation of disjuncts in antecedent. (Contributed by NM, 2-Dec-2012.)
((𝜑𝜓) → 𝜒)       ((𝜓𝜑) → 𝜒)

Theoremorci 720 Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Revised by Mario Carneiro, 31-Jan-2015.)
𝜑       (𝜑𝜓)

Theoremolci 721 Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Revised by Mario Carneiro, 31-Jan-2015.)
𝜑       (𝜓𝜑)

Theoremorcd 722 Deduction introducing a disjunct. (Contributed by NM, 20-Sep-2007.)
(𝜑𝜓)       (𝜑 → (𝜓𝜒))

Theoremolcd 723 Deduction introducing a disjunct. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
(𝜑𝜓)       (𝜑 → (𝜒𝜓))

Theoremorcs 724 Deduction eliminating disjunct. Notational convention: We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 14) -type inference in a proof. (Contributed by NM, 21-Jun-1994.)
((𝜑𝜓) → 𝜒)       (𝜑𝜒)

Theoremolcs 725 Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
((𝜑𝜓) → 𝜒)       (𝜓𝜒)

Theorempm2.07 726 Theorem *2.07 of [WhiteheadRussell] p. 101. (Contributed by NM, 3-Jan-2005.)
(𝜑 → (𝜑𝜑))

Theorempm2.45 727 Theorem *2.45 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
(¬ (𝜑𝜓) → ¬ 𝜑)

Theorempm2.46 728 Theorem *2.46 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
(¬ (𝜑𝜓) → ¬ 𝜓)

Theorempm2.47 729 Theorem *2.47 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
(¬ (𝜑𝜓) → (¬ 𝜑𝜓))

Theorempm2.48 730 Theorem *2.48 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
(¬ (𝜑𝜓) → (𝜑 ∨ ¬ 𝜓))

Theorempm2.49 731 Theorem *2.49 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
(¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))

Theorempm2.67 732 Theorem *2.67 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 9-Dec-2012.)
(((𝜑𝜓) → 𝜓) → (𝜑𝜓))

Theorembiorf 733 A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.)
𝜑 → (𝜓 ↔ (𝜑𝜓)))

Theorembiortn 734 A wff is equivalent to its negated disjunction with falsehood. (Contributed by NM, 9-Jul-2012.)
(𝜑 → (𝜓 ↔ (¬ 𝜑𝜓)))

Theorembiorfi 735 A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.)
¬ 𝜑       (𝜓 ↔ (𝜓𝜑))

Theorempm2.621 736 Theorem *2.621 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 13-Dec-2013.)
((𝜑𝜓) → ((𝜑𝜓) → 𝜓))

Theorempm2.62 737 Theorem *2.62 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Dec-2013.)
((𝜑𝜓) → ((𝜑𝜓) → 𝜓))

Theoremimorri 738 Infer implication from disjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 31-Jan-2015.)
𝜑𝜓)       (𝜑𝜓)

Theorempm4.52im 739 One direction of theorem *4.52 of [WhiteheadRussell] p. 120. The converse also holds in classical logic. (Contributed by Jim Kingdon, 27-Jul-2018.)
((𝜑 ∧ ¬ 𝜓) → ¬ (¬ 𝜑𝜓))

Theorempm4.53r 740 One direction of theorem *4.53 of [WhiteheadRussell] p. 120. The converse also holds in classical logic. (Contributed by Jim Kingdon, 27-Jul-2018.)
((¬ 𝜑𝜓) → ¬ (𝜑 ∧ ¬ 𝜓))

Theoremioran 741 Negated disjunction in terms of conjunction. This version of DeMorgan's law is a biconditional for all propositions (not just decidable ones), unlike oranim 770, anordc 940, or ianordc 884. Compare Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
(¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))

Theorempm3.14 742 Theorem *3.14 of [WhiteheadRussell] p. 111. One direction of De Morgan's law). The biconditional holds for decidable propositions as seen at ianordc 884. The converse holds for decidable propositions, as seen at pm3.13dc 943. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑𝜓))

Theorempm3.1 743 Theorem *3.1 of [WhiteheadRussell] p. 111. The converse holds for decidable propositions, as seen at anordc 940. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
((𝜑𝜓) → ¬ (¬ 𝜑 ∨ ¬ 𝜓))

Theoremjao 744 Disjunction of antecedents. Compare Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 4-Apr-2013.)
((𝜑𝜓) → ((𝜒𝜓) → ((𝜑𝜒) → 𝜓)))

Theorempm1.2 745 Axiom *1.2 (Taut) of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 10-Mar-2013.)
((𝜑𝜑) → 𝜑)

Theoremoridm 746 Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
((𝜑𝜑) ↔ 𝜑)

Theorempm4.25 747 Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.)
(𝜑 ↔ (𝜑𝜑))

Theoremorim12i 748 Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.)
(𝜑𝜓)    &   (𝜒𝜃)       ((𝜑𝜒) → (𝜓𝜃))

Theoremorim1i 749 Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
(𝜑𝜓)       ((𝜑𝜒) → (𝜓𝜒))

Theoremorim2i 750 Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
(𝜑𝜓)       ((𝜒𝜑) → (𝜒𝜓))

Theoremorbi2i 751 Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.)
(𝜑𝜓)       ((𝜒𝜑) ↔ (𝜒𝜓))

Theoremorbi1i 752 Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)       ((𝜑𝜒) ↔ (𝜓𝜒))

Theoremorbi12i 753 Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)    &   (𝜒𝜃)       ((𝜑𝜒) ↔ (𝜓𝜃))

Theorempm1.5 754 Axiom *1.5 (Assoc) of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.)
((𝜑 ∨ (𝜓𝜒)) → (𝜓 ∨ (𝜑𝜒)))

Theoremor12 755 Swap two disjuncts. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2012.)
((𝜑 ∨ (𝜓𝜒)) ↔ (𝜓 ∨ (𝜑𝜒)))

Theoremorass 756 Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))

Theorempm2.31 757 Theorem *2.31 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) ∨ 𝜒))

Theorempm2.32 758 Theorem *2.32 of [WhiteheadRussell] p. 105. (Contributed by NM, 3-Jan-2005.)
(((𝜑𝜓) ∨ 𝜒) → (𝜑 ∨ (𝜓𝜒)))

Theoremor32 759 A rearrangement of disjuncts. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(((𝜑𝜓) ∨ 𝜒) ↔ ((𝜑𝜒) ∨ 𝜓))

Theoremor4 760 Rearrangement of 4 disjuncts. (Contributed by NM, 12-Aug-1994.)
(((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜓𝜃)))

Theoremor42 761 Rearrangement of 4 disjuncts. (Contributed by NM, 10-Jan-2005.)
(((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜃𝜓)))

Theoremorordi 762 Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.)
((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))

Theoremorordir 763 Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.)
(((𝜑𝜓) ∨ 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))

Theorempm2.3 764 Theorem *2.3 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
((𝜑 ∨ (𝜓𝜒)) → (𝜑 ∨ (𝜒𝜓)))

Theorempm2.41 765 Theorem *2.41 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
((𝜓 ∨ (𝜑𝜓)) → (𝜑𝜓))

Theorempm2.42 766 Theorem *2.42 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
((¬ 𝜑 ∨ (𝜑𝜓)) → (𝜑𝜓))

Theorempm2.4 767 Theorem *2.4 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
((𝜑 ∨ (𝜑𝜓)) → (𝜑𝜓))

Theorempm4.44 768 Theorem *4.44 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.)
(𝜑 ↔ (𝜑 ∨ (𝜑𝜓)))

Theorempm4.56 769 Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
((¬ 𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))

Theoremoranim 770 Disjunction in terms of conjunction (DeMorgan's law). One direction of Theorem *4.57 of [WhiteheadRussell] p. 120. The converse does not hold intuitionistically but does hold in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
((𝜑𝜓) → ¬ (¬ 𝜑 ∧ ¬ 𝜓))

Theorempm4.78i 771 Implication distributes over disjunction. One direction of Theorem *4.78 of [WhiteheadRussell] p. 121. The converse holds in classical logic. (Contributed by Jim Kingdon, 15-Jan-2018.)
(((𝜑𝜓) ∨ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))

Theoremmtord 772 A modus tollens deduction involving disjunction. (Contributed by Jeff Hankins, 15-Jul-2009.) (Revised by Mario Carneiro, 31-Jan-2015.)
(𝜑 → ¬ 𝜒)    &   (𝜑 → ¬ 𝜃)    &   (𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → ¬ 𝜓)

Theorempm4.45 773 Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.)
(𝜑 ↔ (𝜑 ∧ (𝜑𝜓)))

Theorempm3.48 774 Theorem *3.48 of [WhiteheadRussell] p. 114. (Contributed by NM, 28-Jan-1997.) (Revised by NM, 1-Dec-2012.)
(((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))

Theoremorim12d 775 Disjoin antecedents and consequents in a deduction. (Contributed by NM, 10-May-1994.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜃𝜏))       (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))

Theoremorim1d 776 Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))

Theoremorim2d 777 Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
(𝜑 → (𝜓𝜒))       (𝜑 → ((𝜃𝜓) → (𝜃𝜒)))

Theoremorim2 778 Axiom *1.6 (Sum) of [WhiteheadRussell] p. 97. (Contributed by NM, 3-Jan-2005.)
((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒)))

Theoremorbi2d 779 Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.)
(𝜑 → (𝜓𝜒))       (𝜑 → ((𝜃𝜓) ↔ (𝜃𝜒)))

Theoremorbi1d 780 Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
(𝜑 → (𝜓𝜒))       (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜃)))

Theoremorbi1 781 Theorem *4.37 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))

Theoremorbi12d 782 Deduction joining two equivalences to form equivalence of disjunctions. (Contributed by NM, 5-Aug-1993.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜃𝜏))       (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))

Theorempm5.61 783 Theorem *5.61 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 30-Jun-2013.)
(((𝜑𝜓) ∧ ¬ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓))

Theoremjaoian 784 Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.)
((𝜑𝜓) → 𝜒)    &   ((𝜃𝜓) → 𝜒)       (((𝜑𝜃) ∧ 𝜓) → 𝜒)

Theoremjao1i 785 Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.)
(𝜓 → (𝜒𝜑))       ((𝜑𝜓) → (𝜒𝜑))

Theoremjaodan 786 Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.)
((𝜑𝜓) → 𝜒)    &   ((𝜑𝜃) → 𝜒)       ((𝜑 ∧ (𝜓𝜃)) → 𝜒)

Theoremmpjaodan 787 Eliminate a disjunction in a deduction. A translation of natural deduction rule E ( elimination). (Contributed by Mario Carneiro, 29-May-2016.)
((𝜑𝜓) → 𝜒)    &   ((𝜑𝜃) → 𝜒)    &   (𝜑 → (𝜓𝜃))       (𝜑𝜒)

Theorempm4.77 788 Theorem *4.77 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
(((𝜓𝜑) ∧ (𝜒𝜑)) ↔ ((𝜓𝜒) → 𝜑))

Theorempm2.63 789 Theorem *2.63 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → ((¬ 𝜑𝜓) → 𝜓))

Theorempm2.64 790 Theorem *2.64 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → ((𝜑 ∨ ¬ 𝜓) → 𝜑))

Theorempm5.53 791 Theorem *5.53 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
((((𝜑𝜓) ∨ 𝜒) → 𝜃) ↔ (((𝜑𝜃) ∧ (𝜓𝜃)) ∧ (𝜒𝜃)))

Theorempm2.38 792 Theorem *2.38 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.)
((𝜓𝜒) → ((𝜓𝜑) → (𝜒𝜑)))

Theorempm2.36 793 Theorem *2.36 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.)
((𝜓𝜒) → ((𝜑𝜓) → (𝜒𝜑)))

Theorempm2.37 794 Theorem *2.37 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.)
((𝜓𝜒) → ((𝜓𝜑) → (𝜑𝜒)))

Theorempm2.73 795 Theorem *2.73 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → (((𝜑𝜓) ∨ 𝜒) → (𝜓𝜒)))

Theorempm2.74 796 Theorem *2.74 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2015.)
((𝜓𝜑) → (((𝜑𝜓) ∨ 𝜒) → (𝜑𝜒)))

Theorempm2.76 797 Theorem *2.76 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.)
((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))

Theorempm2.75 798 Theorem *2.75 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 4-Jan-2013.)
((𝜑𝜓) → ((𝜑 ∨ (𝜓𝜒)) → (𝜑𝜒)))

Theorempm2.8 799 Theorem *2.8 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2015.)
((𝜑𝜓) → ((¬ 𝜓𝜒) → (𝜑𝜒)))

Theorempm2.81 800 Theorem *2.81 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.)
((𝜓 → (𝜒𝜃)) → ((𝜑𝜓) → ((𝜑𝜒) → (𝜑𝜃))))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13316
 Copyright terms: Public domain < Previous  Next >