| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbii | GIF version | ||
| Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| impbii.1 | ⊢ (𝜑 → 𝜓) |
| impbii.2 | ⊢ (𝜓 → 𝜑) |
| Ref | Expression |
|---|---|
| impbii | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbii.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | impbii.2 | . 2 ⊢ (𝜓 → 𝜑) | |
| 3 | bi3 119 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 635 con2b 670 imnan 691 2false 702 pm5.21nii 705 pm4.8 708 oibabs 715 orcom 729 ioran 753 oridm 758 orbi2i 763 or12 767 pm4.44 780 ordi 817 andi 819 pm4.72 828 stdcndc 846 stdcndcOLD 847 stdcn 848 dcnn 849 pm4.82 952 rnlem 978 3jaob 1314 xoranor 1396 falantru 1422 3impexp 1456 3impexpbicom 1457 alcom 1500 19.26 1503 19.3h 1575 19.3 1576 19.21h 1579 19.43 1650 19.9h 1665 excom 1686 19.41h 1707 19.41 1708 equcom 1728 equsalh 1748 equsex 1750 cbvalv1 1773 cbvexv1 1774 cbvalh 1775 cbvexh 1777 sbbii 1787 sbh 1798 equs45f 1824 sb6f 1825 sbcof2 1832 sbequ8 1869 sbidm 1873 sb5rf 1874 sb6rf 1875 equvin 1885 sbimv 1916 cbvalvw 1942 cbvexvw 1943 sbalyz 2026 eu2 2097 eu3h 2098 eu5 2100 mo3h 2106 euan 2109 axext4 2188 cleqh 2304 r19.26 2631 ralcom3 2673 ceqsex 2809 gencbvex 2818 gencbvex2 2819 gencbval 2820 eqvinc 2895 pm13.183 2910 rr19.3v 2911 rr19.28v 2912 reu6 2961 reu3 2962 sbnfc2 3153 difdif 3297 ddifnel 3303 ddifstab 3304 ssddif 3406 difin 3409 uneqin 3423 indifdir 3428 undif3ss 3433 difrab 3446 un00 3506 undifss 3540 ssdifeq0 3542 ralidm 3560 ralf0 3562 ralm 3563 elpr2 3654 snidb 3662 difsnb 3775 preq12b 3810 preqsn 3815 axpweq 4214 exmidn0m 4244 exmidsssn 4245 exmid0el 4247 exmidel 4248 exmidundif 4249 exmidundifim 4250 sspwb 4259 unipw 4260 opm 4277 opth 4280 ssopab2b 4322 elon2 4422 unexb 4488 eusvnfb 4500 eusv2nf 4502 ralxfrALT 4513 uniexb 4519 iunpw 4526 onsucb 4550 unon 4558 sucprcreg 4596 opthreg 4603 ordsuc 4610 dcextest 4628 peano2b 4662 opelxp 4704 opthprc 4725 relop 4827 issetid 4831 xpid11 4900 elres 4994 iss 5004 issref 5064 xpmlem 5102 sqxpeq0 5105 ssrnres 5124 dfrel2 5132 relrelss 5208 fn0 5394 funssxp 5444 f00 5466 f0bi 5467 dffo2 5501 ffoss 5553 f1o00 5556 fo00 5557 fv3 5598 dff2 5723 dffo4 5727 dffo5 5728 fmpt 5729 ffnfv 5737 fsn 5751 fsn2 5753 funop 5762 isores1 5882 ssoprab2b 6001 eqfnov2 6052 cnvoprab 6319 reldmtpos 6338 mapsn 6776 mapsncnv 6781 mptelixpg 6820 elixpsn 6821 ixpsnf1o 6822 en0 6886 en1 6890 dom0 6934 exmidpw 7004 exmidpweq 7005 pw1fin 7006 exmidpw2en 7008 undifdcss 7019 residfi 7041 fidcenum 7057 djuexb 7145 ctssdc 7214 exmidomni 7243 nninfinfwlpo 7281 nninfwlpo 7282 exmidfodomr 7311 exmidontri 7350 exmidontri2or 7354 onntri3or 7356 onntri2or 7357 dftap2 7362 exmidmotap 7372 elni2 7426 ltbtwnnqq 7527 enq0ref 7545 elnp1st2nd 7588 elrealeu 7941 elreal2 7942 le2tri3i 8180 elnn0nn 9336 elnnnn0b 9338 elnnnn0c 9339 elnnz 9381 elnn0z 9384 elnnz1 9394 elz2 9443 eluz2b2 9723 elnn1uz2 9727 elpqb 9770 elioo4g 10055 eluzfz2b 10154 fzm 10159 elfz1end 10176 fzass4 10183 elfz1b 10211 fz01or 10232 nn0fz0 10240 fzolb 10275 fzom 10286 elfzo0 10304 fzo1fzo0n0 10305 elfzo0z 10306 elfzo1 10312 infssuzex 10374 hash2en 10986 wrdexb 11004 0wrd0 11018 rexanuz 11241 rexuz3 11243 sqrt0rlem 11256 fisum0diag 11694 fprod0diagfz 11881 isprm6 12411 oddpwdclemdc 12437 nnoddn2prmb 12527 4sqlem4 12657 4sqexercise1 12663 ennnfone 12738 ctinfom 12741 ctinf 12743 fnpr2ob 13114 dfgrp2 13301 dfgrp3m 13373 dfgrp3me 13374 isnsg3 13485 invghm 13607 dvdsrzring 14307 zrhval 14321 tgclb 14479 xmetunirn 14772 dich0 15066 elply2 15149 2sqlem2 15534 bj-nnsn 15602 bdeq 15692 bdop 15744 bdunexb 15789 bj-2inf 15807 bj-nn0suc 15833 nnnninfen 15891 exmidsbth 15896 trirec0 15916 redc0 15929 reap0 15930 cndcap 15931 neap0mkv 15941 |
| Copyright terms: Public domain | W3C validator |