Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbii | GIF version |
Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
impbii.1 | ⊢ (𝜑 → 𝜓) |
impbii.2 | ⊢ (𝜓 → 𝜑) |
Ref | Expression |
---|---|
impbii | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbii.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | impbii.2 | . 2 ⊢ (𝜓 → 𝜑) | |
3 | bi3 119 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | |
4 | 1, 2, 3 | mp2 16 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 634 con2b 669 imnan 690 2false 701 pm5.21nii 704 pm4.8 707 oibabs 714 orcom 728 ioran 752 oridm 757 orbi2i 762 or12 766 pm4.44 779 ordi 816 andi 818 pm4.72 827 stdcndc 845 stdcndcOLD 846 stdcn 847 dcnn 848 pm4.82 950 rnlem 976 3jaob 1302 xoranor 1377 falantru 1403 3impexp 1435 3impexpbicom 1436 alcom 1476 19.26 1479 19.3h 1551 19.3 1552 19.21h 1555 19.43 1626 19.9h 1641 excom 1662 19.41h 1683 19.41 1684 equcom 1704 equsalh 1724 equsex 1726 cbvalv1 1749 cbvexv1 1750 cbvalh 1751 cbvexh 1753 sbbii 1763 sbh 1774 equs45f 1800 sb6f 1801 sbcof2 1808 sbequ8 1845 sbidm 1849 sb5rf 1850 sb6rf 1851 equvin 1861 sbimv 1891 cbvalvw 1917 cbvexvw 1918 sbalyz 1997 eu2 2068 eu3h 2069 eu5 2071 mo3h 2077 euan 2080 axext4 2159 cleqh 2275 r19.26 2601 ralcom3 2642 ceqsex 2773 gencbvex 2781 gencbvex2 2782 gencbval 2783 eqvinc 2858 pm13.183 2873 rr19.3v 2874 rr19.28v 2875 reu6 2924 reu3 2925 sbnfc2 3115 difdif 3258 ddifnel 3264 ddifstab 3265 ssddif 3367 difin 3370 uneqin 3384 indifdir 3389 undif3ss 3394 difrab 3407 un00 3467 undifss 3501 ssdifeq0 3503 ralidm 3521 ralf0 3524 ralm 3525 elpr2 3611 snidb 3619 difsnb 3732 preq12b 3766 preqsn 3771 axpweq 4166 exmidn0m 4196 exmidsssn 4197 exmid0el 4199 exmidel 4200 exmidundif 4201 exmidundifim 4202 sspwb 4210 unipw 4211 opm 4228 opth 4231 ssopab2b 4270 elon2 4370 unexb 4436 eusvnfb 4448 eusv2nf 4450 ralxfrALT 4461 uniexb 4467 iunpw 4474 sucelon 4496 unon 4504 sucprcreg 4542 opthreg 4549 ordsuc 4556 dcextest 4574 peano2b 4608 opelxp 4650 opthprc 4671 relop 4770 issetid 4774 xpid11 4843 elres 4936 iss 4946 issref 5003 xpmlem 5041 sqxpeq0 5044 ssrnres 5063 dfrel2 5071 relrelss 5147 fn0 5327 funssxp 5377 f00 5399 f0bi 5400 dffo2 5434 ffoss 5485 f1o00 5488 fo00 5489 fv3 5530 dff2 5652 dffo4 5656 dffo5 5657 fmpt 5658 ffnfv 5666 fsn 5680 fsn2 5682 isores1 5805 ssoprab2b 5922 eqfnov2 5972 cnvoprab 6225 reldmtpos 6244 mapsn 6680 mapsncnv 6685 mptelixpg 6724 elixpsn 6725 ixpsnf1o 6726 en0 6785 en1 6789 dom0 6828 exmidpw 6898 exmidpweq 6899 pw1fin 6900 undifdcss 6912 fidcenum 6945 djuexb 7033 ctssdc 7102 exmidomni 7130 nninfwlpo 7167 exmidfodomr 7193 exmidontri 7228 exmidontri2or 7232 onntri3or 7234 onntri2or 7235 elni2 7288 ltbtwnnqq 7389 enq0ref 7407 elnp1st2nd 7450 elrealeu 7803 elreal2 7804 le2tri3i 8040 elnn0nn 9189 elnnnn0b 9191 elnnnn0c 9192 elnnz 9234 elnn0z 9237 elnnz1 9247 elz2 9295 eluz2b2 9574 elnn1uz2 9578 elpqb 9620 elioo4g 9903 eluzfz2b 10001 fzm 10006 elfz1end 10023 fzass4 10030 elfz1b 10058 fz01or 10079 nn0fz0 10087 fzolb 10121 fzom 10132 elfzo0 10150 fzo1fzo0n0 10151 elfzo0z 10152 elfzo1 10158 rexanuz 10963 rexuz3 10965 sqrt0rlem 10978 fisum0diag 11415 fprod0diagfz 11602 infssuzex 11915 isprm6 12112 oddpwdclemdc 12138 nnoddn2prmb 12227 4sqlem4 12355 ennnfone 12391 ctinfom 12394 ctinf 12396 dfgrp2 12762 dfgrp3m 12828 dfgrp3me 12829 tgclb 13134 xmetunirn 13427 2sqlem2 14020 bj-nnsn 14043 bdeq 14133 bdop 14185 bdunexb 14230 bj-2inf 14248 bj-nn0suc 14274 exmidsbth 14331 trirec0 14351 redc0 14364 reap0 14365 |
Copyright terms: Public domain | W3C validator |