Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbii | GIF version |
Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
impbii.1 | ⊢ (𝜑 → 𝜓) |
impbii.2 | ⊢ (𝜓 → 𝜑) |
Ref | Expression |
---|---|
impbii | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbii.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | impbii.2 | . 2 ⊢ (𝜓 → 𝜑) | |
3 | bi3 118 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | |
4 | 1, 2, 3 | mp2 16 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bicom 139 biid 170 2th 173 pm5.74 178 bitri 183 bibi2i 226 bi2.04 247 pm5.4 248 imdi 249 impexp 261 ancom 264 pm4.45im 332 dfbi2 386 anass 399 pm5.32 450 jcab 598 notnotnot 629 con2b 664 imnan 685 2false 696 pm5.21nii 699 pm4.8 702 oibabs 709 orcom 723 ioran 747 oridm 752 orbi2i 757 or12 761 pm4.44 774 ordi 811 andi 813 pm4.72 822 stdcndc 840 stdcndcOLD 841 stdcn 842 dcnn 843 pm4.82 945 rnlem 971 3jaob 1297 xoranor 1372 falantru 1398 3impexp 1430 3impexpbicom 1431 alcom 1471 19.26 1474 19.3h 1546 19.3 1547 19.21h 1550 19.43 1621 19.9h 1636 excom 1657 19.41h 1678 19.41 1679 equcom 1699 equsalh 1719 equsex 1721 cbvalv1 1744 cbvexv1 1745 cbvalh 1746 cbvexh 1748 sbbii 1758 sbh 1769 equs45f 1795 sb6f 1796 sbcof2 1803 sbequ8 1840 sbidm 1844 sb5rf 1845 sb6rf 1846 equvin 1856 sbimv 1886 cbvalvw 1912 cbvexvw 1913 sbalyz 1992 eu2 2063 eu3h 2064 eu5 2066 mo3h 2072 euan 2075 axext4 2154 cleqh 2270 r19.26 2596 ralcom3 2637 ceqsex 2768 gencbvex 2776 gencbvex2 2777 gencbval 2778 eqvinc 2853 pm13.183 2868 rr19.3v 2869 rr19.28v 2870 reu6 2919 reu3 2920 sbnfc2 3109 difdif 3252 ddifnel 3258 ddifstab 3259 ssddif 3361 difin 3364 uneqin 3378 indifdir 3383 undif3ss 3388 difrab 3401 un00 3461 undifss 3495 ssdifeq0 3497 ralidm 3515 ralf0 3518 ralm 3519 elpr2 3605 snidb 3613 difsnb 3723 preq12b 3757 preqsn 3762 axpweq 4157 exmidn0m 4187 exmidsssn 4188 exmid0el 4190 exmidel 4191 exmidundif 4192 exmidundifim 4193 sspwb 4201 unipw 4202 opm 4219 opth 4222 ssopab2b 4261 elon2 4361 unexb 4427 eusvnfb 4439 eusv2nf 4441 ralxfrALT 4452 uniexb 4458 iunpw 4465 sucelon 4487 unon 4495 sucprcreg 4533 opthreg 4540 ordsuc 4547 dcextest 4565 peano2b 4599 opelxp 4641 opthprc 4662 relop 4761 issetid 4765 xpid11 4834 elres 4927 iss 4937 issref 4993 xpmlem 5031 sqxpeq0 5034 ssrnres 5053 dfrel2 5061 relrelss 5137 fn0 5317 funssxp 5367 f00 5389 f0bi 5390 dffo2 5424 ffoss 5474 f1o00 5477 fo00 5478 fv3 5519 dff2 5640 dffo4 5644 dffo5 5645 fmpt 5646 ffnfv 5654 fsn 5668 fsn2 5670 isores1 5793 ssoprab2b 5910 eqfnov2 5960 cnvoprab 6213 reldmtpos 6232 mapsn 6668 mapsncnv 6673 mptelixpg 6712 elixpsn 6713 ixpsnf1o 6714 en0 6773 en1 6777 dom0 6816 exmidpw 6886 exmidpweq 6887 pw1fin 6888 undifdcss 6900 fidcenum 6933 djuexb 7021 ctssdc 7090 exmidomni 7118 nninfwlpo 7155 exmidfodomr 7181 exmidontri 7216 exmidontri2or 7220 onntri3or 7222 onntri2or 7223 elni2 7276 ltbtwnnqq 7377 enq0ref 7395 elnp1st2nd 7438 elrealeu 7791 elreal2 7792 le2tri3i 8028 elnn0nn 9177 elnnnn0b 9179 elnnnn0c 9180 elnnz 9222 elnn0z 9225 elnnz1 9235 elz2 9283 eluz2b2 9562 elnn1uz2 9566 elpqb 9608 elioo4g 9891 eluzfz2b 9989 fzm 9994 elfz1end 10011 fzass4 10018 elfz1b 10046 fz01or 10067 nn0fz0 10075 fzolb 10109 fzom 10120 elfzo0 10138 fzo1fzo0n0 10139 elfzo0z 10140 elfzo1 10146 rexanuz 10952 rexuz3 10954 sqrt0rlem 10967 fisum0diag 11404 fprod0diagfz 11591 infssuzex 11904 isprm6 12101 oddpwdclemdc 12127 nnoddn2prmb 12216 4sqlem4 12344 ennnfone 12380 ctinfom 12383 ctinf 12385 dfgrp2 12732 tgclb 12859 xmetunirn 13152 2sqlem2 13745 bj-nnsn 13768 bdeq 13858 bdop 13910 bdunexb 13955 bj-2inf 13973 bj-nn0suc 13999 exmidsbth 14056 trirec0 14076 redc0 14089 reap0 14090 |
Copyright terms: Public domain | W3C validator |