Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbii | GIF version |
Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
impbii.1 | ⊢ (𝜑 → 𝜓) |
impbii.2 | ⊢ (𝜓 → 𝜑) |
Ref | Expression |
---|---|
impbii | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbii.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | impbii.2 | . 2 ⊢ (𝜓 → 𝜑) | |
3 | bi3 118 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | |
4 | 1, 2, 3 | mp2 16 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bicom 139 biid 170 2th 173 pm5.74 178 bitri 183 bibi2i 226 bi2.04 247 pm5.4 248 imdi 249 impexp 261 ancom 264 pm4.45im 332 dfbi2 386 anass 399 pm5.32 449 jcab 593 notnotnot 624 con2b 659 imnan 680 2false 691 pm5.21nii 694 pm4.8 697 oibabs 704 orcom 718 ioran 742 oridm 747 orbi2i 752 or12 756 pm4.44 769 ordi 806 andi 808 pm4.72 817 stdcndc 835 stdcndcOLD 836 stdcn 837 dcnn 838 pm4.82 940 rnlem 966 3jaob 1292 xoranor 1367 falantru 1393 3impexp 1425 3impexpbicom 1426 alcom 1466 19.26 1469 19.3h 1541 19.3 1542 19.21h 1545 19.43 1616 19.9h 1631 excom 1652 19.41h 1673 19.41 1674 equcom 1694 equsalh 1714 equsex 1716 cbvalv1 1739 cbvexv1 1740 cbvalh 1741 cbvexh 1743 sbbii 1753 sbh 1764 equs45f 1790 sb6f 1791 sbcof2 1798 sbequ8 1835 sbidm 1839 sb5rf 1840 sb6rf 1841 equvin 1851 sbimv 1881 cbvalvw 1907 cbvexvw 1908 sbalyz 1987 eu2 2058 eu3h 2059 eu5 2061 mo3h 2067 euan 2070 axext4 2149 cleqh 2266 r19.26 2592 ralcom3 2633 ceqsex 2764 gencbvex 2772 gencbvex2 2773 gencbval 2774 eqvinc 2849 pm13.183 2864 rr19.3v 2865 rr19.28v 2866 reu6 2915 reu3 2916 sbnfc2 3105 difdif 3247 ddifnel 3253 ddifstab 3254 ssddif 3356 difin 3359 uneqin 3373 indifdir 3378 undif3ss 3383 difrab 3396 un00 3455 undifss 3489 ssdifeq0 3491 ralidm 3509 ralf0 3512 ralm 3513 elpr2 3598 snidb 3606 difsnb 3716 preq12b 3750 preqsn 3755 axpweq 4150 exmidn0m 4180 exmidsssn 4181 exmid0el 4183 exmidel 4184 exmidundif 4185 exmidundifim 4186 sspwb 4194 unipw 4195 opm 4212 opth 4215 ssopab2b 4254 elon2 4354 unexb 4420 eusvnfb 4432 eusv2nf 4434 ralxfrALT 4445 uniexb 4451 iunpw 4458 sucelon 4480 unon 4488 sucprcreg 4526 opthreg 4533 ordsuc 4540 dcextest 4558 peano2b 4592 opelxp 4634 opthprc 4655 relop 4754 issetid 4758 xpid11 4827 elres 4920 iss 4930 issref 4986 xpmlem 5024 sqxpeq0 5027 ssrnres 5046 dfrel2 5054 relrelss 5130 fn0 5307 funssxp 5357 f00 5379 f0bi 5380 dffo2 5414 ffoss 5464 f1o00 5467 fo00 5468 fv3 5509 dff2 5629 dffo4 5633 dffo5 5634 fmpt 5635 ffnfv 5643 fsn 5657 fsn2 5659 isores1 5782 ssoprab2b 5899 eqfnov2 5949 cnvoprab 6202 reldmtpos 6221 mapsn 6656 mapsncnv 6661 mptelixpg 6700 elixpsn 6701 ixpsnf1o 6702 en0 6761 en1 6765 dom0 6804 exmidpw 6874 exmidpweq 6875 pw1fin 6876 undifdcss 6888 fidcenum 6921 djuexb 7009 ctssdc 7078 exmidomni 7106 exmidfodomr 7160 exmidontri 7195 exmidontri2or 7199 onntri3or 7201 onntri2or 7202 elni2 7255 ltbtwnnqq 7356 enq0ref 7374 elnp1st2nd 7417 elrealeu 7770 elreal2 7771 le2tri3i 8007 elnn0nn 9156 elnnnn0b 9158 elnnnn0c 9159 elnnz 9201 elnn0z 9204 elnnz1 9214 elz2 9262 eluz2b2 9541 elnn1uz2 9545 elpqb 9587 elioo4g 9870 eluzfz2b 9968 fzm 9973 elfz1end 9990 fzass4 9997 elfz1b 10025 fz01or 10046 nn0fz0 10054 fzolb 10088 fzom 10099 elfzo0 10117 fzo1fzo0n0 10118 elfzo0z 10119 elfzo1 10125 rexanuz 10930 rexuz3 10932 sqrt0rlem 10945 fisum0diag 11382 fprod0diagfz 11569 infssuzex 11882 isprm6 12079 oddpwdclemdc 12105 nnoddn2prmb 12194 4sqlem4 12322 ennnfone 12358 ctinfom 12361 ctinf 12363 tgclb 12705 xmetunirn 12998 2sqlem2 13591 bj-nnsn 13614 bdeq 13705 bdop 13757 bdunexb 13802 bj-2inf 13820 bj-nn0suc 13846 exmidsbth 13903 trirec0 13923 redc0 13936 reap0 13937 |
Copyright terms: Public domain | W3C validator |