![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbii | GIF version |
Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
impbii.1 | ⊢ (𝜑 → 𝜓) |
impbii.2 | ⊢ (𝜓 → 𝜑) |
Ref | Expression |
---|---|
impbii | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbii.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | impbii.2 | . 2 ⊢ (𝜓 → 𝜑) | |
3 | bi3 119 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | |
4 | 1, 2, 3 | mp2 16 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 634 con2b 669 imnan 690 2false 701 pm5.21nii 704 pm4.8 707 oibabs 714 orcom 728 ioran 752 oridm 757 orbi2i 762 or12 766 pm4.44 779 ordi 816 andi 818 pm4.72 827 stdcndc 845 stdcndcOLD 846 stdcn 847 dcnn 848 pm4.82 950 rnlem 976 3jaob 1302 xoranor 1377 falantru 1403 3impexp 1437 3impexpbicom 1438 alcom 1478 19.26 1481 19.3h 1553 19.3 1554 19.21h 1557 19.43 1628 19.9h 1643 excom 1664 19.41h 1685 19.41 1686 equcom 1706 equsalh 1726 equsex 1728 cbvalv1 1751 cbvexv1 1752 cbvalh 1753 cbvexh 1755 sbbii 1765 sbh 1776 equs45f 1802 sb6f 1803 sbcof2 1810 sbequ8 1847 sbidm 1851 sb5rf 1852 sb6rf 1853 equvin 1863 sbimv 1893 cbvalvw 1919 cbvexvw 1920 sbalyz 1999 eu2 2070 eu3h 2071 eu5 2073 mo3h 2079 euan 2082 axext4 2161 cleqh 2277 r19.26 2603 ralcom3 2644 ceqsex 2775 gencbvex 2783 gencbvex2 2784 gencbval 2785 eqvinc 2860 pm13.183 2875 rr19.3v 2876 rr19.28v 2877 reu6 2926 reu3 2927 sbnfc2 3117 difdif 3260 ddifnel 3266 ddifstab 3267 ssddif 3369 difin 3372 uneqin 3386 indifdir 3391 undif3ss 3396 difrab 3409 un00 3469 undifss 3503 ssdifeq0 3505 ralidm 3523 ralf0 3526 ralm 3527 elpr2 3614 snidb 3622 difsnb 3735 preq12b 3770 preqsn 3775 axpweq 4171 exmidn0m 4201 exmidsssn 4202 exmid0el 4204 exmidel 4205 exmidundif 4206 exmidundifim 4207 sspwb 4216 unipw 4217 opm 4234 opth 4237 ssopab2b 4276 elon2 4376 unexb 4442 eusvnfb 4454 eusv2nf 4456 ralxfrALT 4467 uniexb 4473 iunpw 4480 onsucb 4502 unon 4510 sucprcreg 4548 opthreg 4555 ordsuc 4562 dcextest 4580 peano2b 4614 opelxp 4656 opthprc 4677 relop 4777 issetid 4781 xpid11 4850 elres 4943 iss 4953 issref 5011 xpmlem 5049 sqxpeq0 5052 ssrnres 5071 dfrel2 5079 relrelss 5155 fn0 5335 funssxp 5385 f00 5407 f0bi 5408 dffo2 5442 ffoss 5493 f1o00 5496 fo00 5497 fv3 5538 dff2 5660 dffo4 5664 dffo5 5665 fmpt 5666 ffnfv 5674 fsn 5688 fsn2 5690 isores1 5814 ssoprab2b 5931 eqfnov2 5981 cnvoprab 6234 reldmtpos 6253 mapsn 6689 mapsncnv 6694 mptelixpg 6733 elixpsn 6734 ixpsnf1o 6735 en0 6794 en1 6798 dom0 6837 exmidpw 6907 exmidpweq 6908 pw1fin 6909 undifdcss 6921 fidcenum 6954 djuexb 7042 ctssdc 7111 exmidomni 7139 nninfwlpo 7176 exmidfodomr 7202 exmidontri 7237 exmidontri2or 7241 onntri3or 7243 onntri2or 7244 dftap2 7249 exmidmotap 7259 elni2 7312 ltbtwnnqq 7413 enq0ref 7431 elnp1st2nd 7474 elrealeu 7827 elreal2 7828 le2tri3i 8065 elnn0nn 9217 elnnnn0b 9219 elnnnn0c 9220 elnnz 9262 elnn0z 9265 elnnz1 9275 elz2 9323 eluz2b2 9602 elnn1uz2 9606 elpqb 9648 elioo4g 9933 eluzfz2b 10032 fzm 10037 elfz1end 10054 fzass4 10061 elfz1b 10089 fz01or 10110 nn0fz0 10118 fzolb 10152 fzom 10163 elfzo0 10181 fzo1fzo0n0 10182 elfzo0z 10183 elfzo1 10189 rexanuz 10996 rexuz3 10998 sqrt0rlem 11011 fisum0diag 11448 fprod0diagfz 11635 infssuzex 11949 isprm6 12146 oddpwdclemdc 12172 nnoddn2prmb 12261 4sqlem4 12389 ennnfone 12425 ctinfom 12428 ctinf 12430 fnpr2ob 12758 dfgrp2 12901 dfgrp3m 12968 dfgrp3me 12969 isnsg3 13065 dvdsrzring 13463 tgclb 13535 xmetunirn 13828 2sqlem2 14432 bj-nnsn 14455 bdeq 14545 bdop 14597 bdunexb 14642 bj-2inf 14660 bj-nn0suc 14686 exmidsbth 14742 trirec0 14762 redc0 14775 reap0 14776 neap0mkv 14786 |
Copyright terms: Public domain | W3C validator |