![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbii | GIF version |
Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
impbii.1 | ⊢ (𝜑 → 𝜓) |
impbii.2 | ⊢ (𝜓 → 𝜑) |
Ref | Expression |
---|---|
impbii | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbii.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | impbii.2 | . 2 ⊢ (𝜓 → 𝜑) | |
3 | bi3 119 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | |
4 | 1, 2, 3 | mp2 16 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 635 con2b 670 imnan 691 2false 702 pm5.21nii 705 pm4.8 708 oibabs 715 orcom 729 ioran 753 oridm 758 orbi2i 763 or12 767 pm4.44 780 ordi 817 andi 819 pm4.72 828 stdcndc 846 stdcndcOLD 847 stdcn 848 dcnn 849 pm4.82 952 rnlem 978 3jaob 1313 xoranor 1388 falantru 1414 3impexp 1448 3impexpbicom 1449 alcom 1489 19.26 1492 19.3h 1564 19.3 1565 19.21h 1568 19.43 1639 19.9h 1654 excom 1675 19.41h 1696 19.41 1697 equcom 1717 equsalh 1737 equsex 1739 cbvalv1 1762 cbvexv1 1763 cbvalh 1764 cbvexh 1766 sbbii 1776 sbh 1787 equs45f 1813 sb6f 1814 sbcof2 1821 sbequ8 1858 sbidm 1862 sb5rf 1863 sb6rf 1864 equvin 1874 sbimv 1905 cbvalvw 1931 cbvexvw 1932 sbalyz 2015 eu2 2086 eu3h 2087 eu5 2089 mo3h 2095 euan 2098 axext4 2177 cleqh 2293 r19.26 2620 ralcom3 2662 ceqsex 2798 gencbvex 2806 gencbvex2 2807 gencbval 2808 eqvinc 2883 pm13.183 2898 rr19.3v 2899 rr19.28v 2900 reu6 2949 reu3 2950 sbnfc2 3141 difdif 3284 ddifnel 3290 ddifstab 3291 ssddif 3393 difin 3396 uneqin 3410 indifdir 3415 undif3ss 3420 difrab 3433 un00 3493 undifss 3527 ssdifeq0 3529 ralidm 3547 ralf0 3549 ralm 3550 elpr2 3640 snidb 3648 difsnb 3761 preq12b 3796 preqsn 3801 axpweq 4200 exmidn0m 4230 exmidsssn 4231 exmid0el 4233 exmidel 4234 exmidundif 4235 exmidundifim 4236 sspwb 4245 unipw 4246 opm 4263 opth 4266 ssopab2b 4307 elon2 4407 unexb 4473 eusvnfb 4485 eusv2nf 4487 ralxfrALT 4498 uniexb 4504 iunpw 4511 onsucb 4535 unon 4543 sucprcreg 4581 opthreg 4588 ordsuc 4595 dcextest 4613 peano2b 4647 opelxp 4689 opthprc 4710 relop 4812 issetid 4816 xpid11 4885 elres 4978 iss 4988 issref 5048 xpmlem 5086 sqxpeq0 5089 ssrnres 5108 dfrel2 5116 relrelss 5192 fn0 5373 funssxp 5423 f00 5445 f0bi 5446 dffo2 5480 ffoss 5532 f1o00 5535 fo00 5536 fv3 5577 dff2 5702 dffo4 5706 dffo5 5707 fmpt 5708 ffnfv 5716 fsn 5730 fsn2 5732 isores1 5857 ssoprab2b 5975 eqfnov2 6026 cnvoprab 6287 reldmtpos 6306 mapsn 6744 mapsncnv 6749 mptelixpg 6788 elixpsn 6789 ixpsnf1o 6790 en0 6849 en1 6853 dom0 6894 exmidpw 6964 exmidpweq 6965 pw1fin 6966 exmidpw2en 6968 undifdcss 6979 residfi 6999 fidcenum 7015 djuexb 7103 ctssdc 7172 exmidomni 7201 nninfwlpo 7238 exmidfodomr 7264 exmidontri 7299 exmidontri2or 7303 onntri3or 7305 onntri2or 7306 dftap2 7311 exmidmotap 7321 elni2 7374 ltbtwnnqq 7475 enq0ref 7493 elnp1st2nd 7536 elrealeu 7889 elreal2 7890 le2tri3i 8128 elnn0nn 9282 elnnnn0b 9284 elnnnn0c 9285 elnnz 9327 elnn0z 9330 elnnz1 9340 elz2 9388 eluz2b2 9668 elnn1uz2 9672 elpqb 9715 elioo4g 10000 eluzfz2b 10099 fzm 10104 elfz1end 10121 fzass4 10128 elfz1b 10156 fz01or 10177 nn0fz0 10185 fzolb 10220 fzom 10231 elfzo0 10249 fzo1fzo0n0 10250 elfzo0z 10251 elfzo1 10257 wrdexb 10926 0wrd0 10940 rexanuz 11132 rexuz3 11134 sqrt0rlem 11147 fisum0diag 11584 fprod0diagfz 11771 infssuzex 12086 isprm6 12285 oddpwdclemdc 12311 nnoddn2prmb 12400 4sqlem4 12530 4sqexercise1 12536 ennnfone 12582 ctinfom 12585 ctinf 12587 fnpr2ob 12923 dfgrp2 13099 dfgrp3m 13171 dfgrp3me 13172 isnsg3 13277 invghm 13399 dvdsrzring 14091 zrhval 14105 tgclb 14233 xmetunirn 14526 dich0 14806 elply2 14881 2sqlem2 15202 bj-nnsn 15225 bdeq 15315 bdop 15367 bdunexb 15412 bj-2inf 15430 bj-nn0suc 15456 nnnninfen 15511 exmidsbth 15514 trirec0 15534 redc0 15547 reap0 15548 cndcap 15549 neap0mkv 15559 |
Copyright terms: Public domain | W3C validator |