![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbii | GIF version |
Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
impbii.1 | ⊢ (𝜑 → 𝜓) |
impbii.2 | ⊢ (𝜓 → 𝜑) |
Ref | Expression |
---|---|
impbii | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbii.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | impbii.2 | . 2 ⊢ (𝜓 → 𝜑) | |
3 | bi3 119 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | |
4 | 1, 2, 3 | mp2 16 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 635 con2b 670 imnan 691 2false 702 pm5.21nii 705 pm4.8 708 oibabs 715 orcom 729 ioran 753 oridm 758 orbi2i 763 or12 767 pm4.44 780 ordi 817 andi 819 pm4.72 828 stdcndc 846 stdcndcOLD 847 stdcn 848 dcnn 849 pm4.82 952 rnlem 978 3jaob 1313 xoranor 1388 falantru 1414 3impexp 1448 3impexpbicom 1449 alcom 1489 19.26 1492 19.3h 1564 19.3 1565 19.21h 1568 19.43 1639 19.9h 1654 excom 1675 19.41h 1696 19.41 1697 equcom 1717 equsalh 1737 equsex 1739 cbvalv1 1762 cbvexv1 1763 cbvalh 1764 cbvexh 1766 sbbii 1776 sbh 1787 equs45f 1813 sb6f 1814 sbcof2 1821 sbequ8 1858 sbidm 1862 sb5rf 1863 sb6rf 1864 equvin 1874 sbimv 1905 cbvalvw 1931 cbvexvw 1932 sbalyz 2015 eu2 2086 eu3h 2087 eu5 2089 mo3h 2095 euan 2098 axext4 2177 cleqh 2293 r19.26 2620 ralcom3 2662 ceqsex 2798 gencbvex 2807 gencbvex2 2808 gencbval 2809 eqvinc 2884 pm13.183 2899 rr19.3v 2900 rr19.28v 2901 reu6 2950 reu3 2951 sbnfc2 3142 difdif 3285 ddifnel 3291 ddifstab 3292 ssddif 3394 difin 3397 uneqin 3411 indifdir 3416 undif3ss 3421 difrab 3434 un00 3494 undifss 3528 ssdifeq0 3530 ralidm 3548 ralf0 3550 ralm 3551 elpr2 3641 snidb 3649 difsnb 3762 preq12b 3797 preqsn 3802 axpweq 4201 exmidn0m 4231 exmidsssn 4232 exmid0el 4234 exmidel 4235 exmidundif 4236 exmidundifim 4237 sspwb 4246 unipw 4247 opm 4264 opth 4267 ssopab2b 4308 elon2 4408 unexb 4474 eusvnfb 4486 eusv2nf 4488 ralxfrALT 4499 uniexb 4505 iunpw 4512 onsucb 4536 unon 4544 sucprcreg 4582 opthreg 4589 ordsuc 4596 dcextest 4614 peano2b 4648 opelxp 4690 opthprc 4711 relop 4813 issetid 4817 xpid11 4886 elres 4979 iss 4989 issref 5049 xpmlem 5087 sqxpeq0 5090 ssrnres 5109 dfrel2 5117 relrelss 5193 fn0 5374 funssxp 5424 f00 5446 f0bi 5447 dffo2 5481 ffoss 5533 f1o00 5536 fo00 5537 fv3 5578 dff2 5703 dffo4 5707 dffo5 5708 fmpt 5709 ffnfv 5717 fsn 5731 fsn2 5733 isores1 5858 ssoprab2b 5976 eqfnov2 6027 cnvoprab 6289 reldmtpos 6308 mapsn 6746 mapsncnv 6751 mptelixpg 6790 elixpsn 6791 ixpsnf1o 6792 en0 6851 en1 6855 dom0 6896 exmidpw 6966 exmidpweq 6967 pw1fin 6968 exmidpw2en 6970 undifdcss 6981 residfi 7001 fidcenum 7017 djuexb 7105 ctssdc 7174 exmidomni 7203 nninfwlpo 7240 exmidfodomr 7266 exmidontri 7301 exmidontri2or 7305 onntri3or 7307 onntri2or 7308 dftap2 7313 exmidmotap 7323 elni2 7376 ltbtwnnqq 7477 enq0ref 7495 elnp1st2nd 7538 elrealeu 7891 elreal2 7892 le2tri3i 8130 elnn0nn 9285 elnnnn0b 9287 elnnnn0c 9288 elnnz 9330 elnn0z 9333 elnnz1 9343 elz2 9391 eluz2b2 9671 elnn1uz2 9675 elpqb 9718 elioo4g 10003 eluzfz2b 10102 fzm 10107 elfz1end 10124 fzass4 10131 elfz1b 10159 fz01or 10180 nn0fz0 10188 fzolb 10223 fzom 10234 elfzo0 10252 fzo1fzo0n0 10253 elfzo0z 10254 elfzo1 10260 wrdexb 10929 0wrd0 10943 rexanuz 11135 rexuz3 11137 sqrt0rlem 11150 fisum0diag 11587 fprod0diagfz 11774 infssuzex 12089 isprm6 12288 oddpwdclemdc 12314 nnoddn2prmb 12403 4sqlem4 12533 4sqexercise1 12539 ennnfone 12585 ctinfom 12588 ctinf 12590 fnpr2ob 12926 dfgrp2 13102 dfgrp3m 13174 dfgrp3me 13175 isnsg3 13280 invghm 13402 dvdsrzring 14102 zrhval 14116 tgclb 14244 xmetunirn 14537 dich0 14831 elply2 14914 2sqlem2 15272 bj-nnsn 15295 bdeq 15385 bdop 15437 bdunexb 15482 bj-2inf 15500 bj-nn0suc 15526 nnnninfen 15581 exmidsbth 15584 trirec0 15604 redc0 15617 reap0 15618 cndcap 15619 neap0mkv 15629 |
Copyright terms: Public domain | W3C validator |