| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbii | GIF version | ||
| Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| impbii.1 | ⊢ (𝜑 → 𝜓) |
| impbii.2 | ⊢ (𝜓 → 𝜑) |
| Ref | Expression |
|---|---|
| impbii | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbii.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | impbii.2 | . 2 ⊢ (𝜓 → 𝜑) | |
| 3 | bi3 119 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 635 con2b 671 imnan 692 2false 703 pm5.21nii 706 pm4.8 709 oibabs 716 orcom 730 ioran 754 oridm 759 orbi2i 764 or12 768 pm4.44 781 ordi 818 andi 820 pm4.72 829 stdcndc 847 stdcndcOLD 848 stdcn 849 dcnn 850 pm4.82 953 rnlem 979 3jaob 1315 xoranor 1397 falantru 1423 3impexp 1458 3impexpbicom 1459 alcom 1502 19.26 1505 19.3h 1577 19.3 1578 19.21h 1581 19.43 1652 19.9h 1667 excom 1688 19.41h 1709 19.41 1710 equcom 1730 equsalh 1750 equsex 1752 cbvalv1 1775 cbvexv1 1776 cbvalh 1777 cbvexh 1779 sbbii 1789 sbh 1800 equs45f 1826 sb6f 1827 sbcof2 1834 sbequ8 1871 sbidm 1875 sb5rf 1876 sb6rf 1877 equvin 1887 sbimv 1918 cbvalvw 1944 cbvexvw 1945 sbalyz 2028 eu2 2099 eu3h 2100 eu5 2102 mo3h 2108 euan 2111 axext4 2190 cleqh 2306 r19.26 2633 ralcom3 2675 ceqsex 2812 gencbvex 2821 gencbvex2 2822 gencbval 2823 eqvinc 2900 pm13.183 2915 rr19.3v 2916 rr19.28v 2917 reu6 2966 reu3 2967 sbnfc2 3158 difdif 3302 ddifnel 3308 ddifstab 3309 ssddif 3411 difin 3414 uneqin 3428 indifdir 3433 undif3ss 3438 difrab 3451 un00 3511 undifss 3545 ssdifeq0 3547 ralidm 3565 ralf0 3567 ralm 3568 elpr2 3660 snidb 3668 difsnb 3782 preq12b 3817 preqsn 3822 axpweq 4223 exmidn0m 4253 exmidsssn 4254 exmid0el 4256 exmidel 4257 exmidundif 4258 exmidundifim 4259 sspwb 4268 unipw 4269 opm 4286 opth 4289 ssopab2b 4331 elon2 4431 unexb 4497 eusvnfb 4509 eusv2nf 4511 ralxfrALT 4522 uniexb 4528 iunpw 4535 onsucb 4559 unon 4567 sucprcreg 4605 opthreg 4612 ordsuc 4619 dcextest 4637 peano2b 4671 opelxp 4713 opthprc 4734 relop 4836 issetid 4840 xpid11 4910 elres 5004 iss 5014 issref 5074 xpmlem 5112 sqxpeq0 5115 ssrnres 5134 dfrel2 5142 relrelss 5218 fn0 5405 funssxp 5455 f00 5479 f0bi 5480 dffo2 5514 ffoss 5566 f1o00 5570 fo00 5571 fv3 5612 dff2 5737 dffo4 5741 dffo5 5742 fmpt 5743 ffnfv 5751 fsn 5765 fsn2 5767 funop 5776 isores1 5896 ssoprab2b 6015 eqfnov2 6066 cnvoprab 6333 reldmtpos 6352 mapsn 6790 mapsncnv 6795 mptelixpg 6834 elixpsn 6835 ixpsnf1o 6836 en0 6900 en1 6904 dom0 6950 exmidpw 7020 exmidpweq 7021 pw1fin 7022 exmidpw2en 7024 undifdcss 7035 residfi 7057 fidcenum 7073 djuexb 7161 ctssdc 7230 exmidomni 7259 nninfinfwlpo 7297 nninfwlpo 7298 exmidfodomr 7328 iftrueb01 7354 exmidontri 7370 exmidontri2or 7374 onntri3or 7376 onntri2or 7377 dftap2 7383 exmidmotap 7393 elni2 7447 ltbtwnnqq 7548 enq0ref 7566 elnp1st2nd 7609 elrealeu 7962 elreal2 7963 le2tri3i 8201 elnn0nn 9357 elnnnn0b 9359 elnnnn0c 9360 elnnz 9402 elnn0z 9405 elnnz1 9415 elz2 9464 eluz2b2 9744 elnn1uz2 9748 elpqb 9791 elioo4g 10076 eluzfz2b 10175 fzm 10180 elfz1end 10197 fzass4 10204 elfz1b 10232 fz01or 10253 nn0fz0 10261 fzolb 10296 fzom 10307 elfzo0 10328 fzo1fzo0n0 10329 elfzo0z 10330 elfzo1 10336 infssuzex 10398 hash2en 11010 wrdexb 11028 0wrd0 11042 rexanuz 11374 rexuz3 11376 sqrt0rlem 11389 fisum0diag 11827 fprod0diagfz 12014 isprm6 12544 oddpwdclemdc 12570 nnoddn2prmb 12660 4sqlem4 12790 4sqexercise1 12796 ennnfone 12871 ctinfom 12874 ctinf 12876 fnpr2ob 13247 dfgrp2 13434 dfgrp3m 13506 dfgrp3me 13507 isnsg3 13618 invghm 13740 dvdsrzring 14440 zrhval 14454 tgclb 14612 xmetunirn 14905 dich0 15199 elply2 15282 2sqlem2 15667 bj-nnsn 15808 bdeq 15897 bdop 15949 bdunexb 15994 bj-2inf 16012 bj-nn0suc 16038 nnnninfen 16099 exmidsbth 16104 trirec0 16124 redc0 16137 reap0 16138 cndcap 16139 neap0mkv 16149 |
| Copyright terms: Public domain | W3C validator |