| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > impbii | GIF version | ||
| Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| impbii.1 | ⊢ (𝜑 → 𝜓) | 
| impbii.2 | ⊢ (𝜓 → 𝜑) | 
| Ref | Expression | 
|---|---|
| impbii | ⊢ (𝜑 ↔ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | impbii.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | impbii.2 | . 2 ⊢ (𝜓 → 𝜑) | |
| 3 | bi3 119 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ (𝜑 ↔ 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 635 con2b 670 imnan 691 2false 702 pm5.21nii 705 pm4.8 708 oibabs 715 orcom 729 ioran 753 oridm 758 orbi2i 763 or12 767 pm4.44 780 ordi 817 andi 819 pm4.72 828 stdcndc 846 stdcndcOLD 847 stdcn 848 dcnn 849 pm4.82 952 rnlem 978 3jaob 1313 xoranor 1388 falantru 1414 3impexp 1448 3impexpbicom 1449 alcom 1492 19.26 1495 19.3h 1567 19.3 1568 19.21h 1571 19.43 1642 19.9h 1657 excom 1678 19.41h 1699 19.41 1700 equcom 1720 equsalh 1740 equsex 1742 cbvalv1 1765 cbvexv1 1766 cbvalh 1767 cbvexh 1769 sbbii 1779 sbh 1790 equs45f 1816 sb6f 1817 sbcof2 1824 sbequ8 1861 sbidm 1865 sb5rf 1866 sb6rf 1867 equvin 1877 sbimv 1908 cbvalvw 1934 cbvexvw 1935 sbalyz 2018 eu2 2089 eu3h 2090 eu5 2092 mo3h 2098 euan 2101 axext4 2180 cleqh 2296 r19.26 2623 ralcom3 2665 ceqsex 2801 gencbvex 2810 gencbvex2 2811 gencbval 2812 eqvinc 2887 pm13.183 2902 rr19.3v 2903 rr19.28v 2904 reu6 2953 reu3 2954 sbnfc2 3145 difdif 3288 ddifnel 3294 ddifstab 3295 ssddif 3397 difin 3400 uneqin 3414 indifdir 3419 undif3ss 3424 difrab 3437 un00 3497 undifss 3531 ssdifeq0 3533 ralidm 3551 ralf0 3553 ralm 3554 elpr2 3644 snidb 3652 difsnb 3765 preq12b 3800 preqsn 3805 axpweq 4204 exmidn0m 4234 exmidsssn 4235 exmid0el 4237 exmidel 4238 exmidundif 4239 exmidundifim 4240 sspwb 4249 unipw 4250 opm 4267 opth 4270 ssopab2b 4311 elon2 4411 unexb 4477 eusvnfb 4489 eusv2nf 4491 ralxfrALT 4502 uniexb 4508 iunpw 4515 onsucb 4539 unon 4547 sucprcreg 4585 opthreg 4592 ordsuc 4599 dcextest 4617 peano2b 4651 opelxp 4693 opthprc 4714 relop 4816 issetid 4820 xpid11 4889 elres 4982 iss 4992 issref 5052 xpmlem 5090 sqxpeq0 5093 ssrnres 5112 dfrel2 5120 relrelss 5196 fn0 5377 funssxp 5427 f00 5449 f0bi 5450 dffo2 5484 ffoss 5536 f1o00 5539 fo00 5540 fv3 5581 dff2 5706 dffo4 5710 dffo5 5711 fmpt 5712 ffnfv 5720 fsn 5734 fsn2 5736 isores1 5861 ssoprab2b 5979 eqfnov2 6030 cnvoprab 6292 reldmtpos 6311 mapsn 6749 mapsncnv 6754 mptelixpg 6793 elixpsn 6794 ixpsnf1o 6795 en0 6854 en1 6858 dom0 6899 exmidpw 6969 exmidpweq 6970 pw1fin 6971 exmidpw2en 6973 undifdcss 6984 residfi 7006 fidcenum 7022 djuexb 7110 ctssdc 7179 exmidomni 7208 nninfwlpo 7245 exmidfodomr 7271 exmidontri 7306 exmidontri2or 7310 onntri3or 7312 onntri2or 7313 dftap2 7318 exmidmotap 7328 elni2 7381 ltbtwnnqq 7482 enq0ref 7500 elnp1st2nd 7543 elrealeu 7896 elreal2 7897 le2tri3i 8135 elnn0nn 9291 elnnnn0b 9293 elnnnn0c 9294 elnnz 9336 elnn0z 9339 elnnz1 9349 elz2 9397 eluz2b2 9677 elnn1uz2 9681 elpqb 9724 elioo4g 10009 eluzfz2b 10108 fzm 10113 elfz1end 10130 fzass4 10137 elfz1b 10165 fz01or 10186 nn0fz0 10194 fzolb 10229 fzom 10240 elfzo0 10258 fzo1fzo0n0 10259 elfzo0z 10260 elfzo1 10266 infssuzex 10323 wrdexb 10947 0wrd0 10961 rexanuz 11153 rexuz3 11155 sqrt0rlem 11168 fisum0diag 11606 fprod0diagfz 11793 isprm6 12315 oddpwdclemdc 12341 nnoddn2prmb 12431 4sqlem4 12561 4sqexercise1 12567 ennnfone 12642 ctinfom 12645 ctinf 12647 fnpr2ob 12983 dfgrp2 13159 dfgrp3m 13231 dfgrp3me 13232 isnsg3 13337 invghm 13459 dvdsrzring 14159 zrhval 14173 tgclb 14301 xmetunirn 14594 dich0 14888 elply2 14971 2sqlem2 15356 bj-nnsn 15379 bdeq 15469 bdop 15521 bdunexb 15566 bj-2inf 15584 bj-nn0suc 15610 nnnninfen 15665 exmidsbth 15668 trirec0 15688 redc0 15701 reap0 15702 cndcap 15703 neap0mkv 15713 | 
| Copyright terms: Public domain | W3C validator |