| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbii | GIF version | ||
| Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| impbii.1 | ⊢ (𝜑 → 𝜓) |
| impbii.2 | ⊢ (𝜓 → 𝜑) |
| Ref | Expression |
|---|---|
| impbii | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbii.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | impbii.2 | . 2 ⊢ (𝜓 → 𝜑) | |
| 3 | bi3 119 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 635 con2b 670 imnan 691 2false 702 pm5.21nii 705 pm4.8 708 oibabs 715 orcom 729 ioran 753 oridm 758 orbi2i 763 or12 767 pm4.44 780 ordi 817 andi 819 pm4.72 828 stdcndc 846 stdcndcOLD 847 stdcn 848 dcnn 849 pm4.82 952 rnlem 978 3jaob 1313 xoranor 1388 falantru 1414 3impexp 1448 3impexpbicom 1449 alcom 1492 19.26 1495 19.3h 1567 19.3 1568 19.21h 1571 19.43 1642 19.9h 1657 excom 1678 19.41h 1699 19.41 1700 equcom 1720 equsalh 1740 equsex 1742 cbvalv1 1765 cbvexv1 1766 cbvalh 1767 cbvexh 1769 sbbii 1779 sbh 1790 equs45f 1816 sb6f 1817 sbcof2 1824 sbequ8 1861 sbidm 1865 sb5rf 1866 sb6rf 1867 equvin 1877 sbimv 1908 cbvalvw 1934 cbvexvw 1935 sbalyz 2018 eu2 2089 eu3h 2090 eu5 2092 mo3h 2098 euan 2101 axext4 2180 cleqh 2296 r19.26 2623 ralcom3 2665 ceqsex 2801 gencbvex 2810 gencbvex2 2811 gencbval 2812 eqvinc 2887 pm13.183 2902 rr19.3v 2903 rr19.28v 2904 reu6 2953 reu3 2954 sbnfc2 3145 difdif 3289 ddifnel 3295 ddifstab 3296 ssddif 3398 difin 3401 uneqin 3415 indifdir 3420 undif3ss 3425 difrab 3438 un00 3498 undifss 3532 ssdifeq0 3534 ralidm 3552 ralf0 3554 ralm 3555 elpr2 3645 snidb 3653 difsnb 3766 preq12b 3801 preqsn 3806 axpweq 4205 exmidn0m 4235 exmidsssn 4236 exmid0el 4238 exmidel 4239 exmidundif 4240 exmidundifim 4241 sspwb 4250 unipw 4251 opm 4268 opth 4271 ssopab2b 4312 elon2 4412 unexb 4478 eusvnfb 4490 eusv2nf 4492 ralxfrALT 4503 uniexb 4509 iunpw 4516 onsucb 4540 unon 4548 sucprcreg 4586 opthreg 4593 ordsuc 4600 dcextest 4618 peano2b 4652 opelxp 4694 opthprc 4715 relop 4817 issetid 4821 xpid11 4890 elres 4983 iss 4993 issref 5053 xpmlem 5091 sqxpeq0 5094 ssrnres 5113 dfrel2 5121 relrelss 5197 fn0 5380 funssxp 5430 f00 5452 f0bi 5453 dffo2 5487 ffoss 5539 f1o00 5542 fo00 5543 fv3 5584 dff2 5709 dffo4 5713 dffo5 5714 fmpt 5715 ffnfv 5723 fsn 5737 fsn2 5739 isores1 5864 ssoprab2b 5983 eqfnov2 6034 cnvoprab 6301 reldmtpos 6320 mapsn 6758 mapsncnv 6763 mptelixpg 6802 elixpsn 6803 ixpsnf1o 6804 en0 6863 en1 6867 dom0 6908 exmidpw 6978 exmidpweq 6979 pw1fin 6980 exmidpw2en 6982 undifdcss 6993 residfi 7015 fidcenum 7031 djuexb 7119 ctssdc 7188 exmidomni 7217 nninfinfwlpo 7255 nninfwlpo 7256 exmidfodomr 7285 exmidontri 7324 exmidontri2or 7328 onntri3or 7330 onntri2or 7331 dftap2 7336 exmidmotap 7346 elni2 7400 ltbtwnnqq 7501 enq0ref 7519 elnp1st2nd 7562 elrealeu 7915 elreal2 7916 le2tri3i 8154 elnn0nn 9310 elnnnn0b 9312 elnnnn0c 9313 elnnz 9355 elnn0z 9358 elnnz1 9368 elz2 9416 eluz2b2 9696 elnn1uz2 9700 elpqb 9743 elioo4g 10028 eluzfz2b 10127 fzm 10132 elfz1end 10149 fzass4 10156 elfz1b 10184 fz01or 10205 nn0fz0 10213 fzolb 10248 fzom 10259 elfzo0 10277 fzo1fzo0n0 10278 elfzo0z 10279 elfzo1 10285 infssuzex 10342 wrdexb 10966 0wrd0 10980 rexanuz 11172 rexuz3 11174 sqrt0rlem 11187 fisum0diag 11625 fprod0diagfz 11812 isprm6 12342 oddpwdclemdc 12368 nnoddn2prmb 12458 4sqlem4 12588 4sqexercise1 12594 ennnfone 12669 ctinfom 12672 ctinf 12674 fnpr2ob 13044 dfgrp2 13231 dfgrp3m 13303 dfgrp3me 13304 isnsg3 13415 invghm 13537 dvdsrzring 14237 zrhval 14251 tgclb 14409 xmetunirn 14702 dich0 14996 elply2 15079 2sqlem2 15464 bj-nnsn 15487 bdeq 15577 bdop 15629 bdunexb 15674 bj-2inf 15692 bj-nn0suc 15718 nnnninfen 15776 exmidsbth 15781 trirec0 15801 redc0 15814 reap0 15815 cndcap 15816 neap0mkv 15826 |
| Copyright terms: Public domain | W3C validator |