| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbii | GIF version | ||
| Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| impbii.1 | ⊢ (𝜑 → 𝜓) |
| impbii.2 | ⊢ (𝜓 → 𝜑) |
| Ref | Expression |
|---|---|
| impbii | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbii.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | impbii.2 | . 2 ⊢ (𝜓 → 𝜑) | |
| 3 | bi3 119 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 605 notnotnot 637 con2b 673 imnan 694 2false 706 pm5.21nii 709 pm4.8 712 oibabs 719 orcom 733 ioran 757 oridm 762 orbi2i 767 or12 771 pm4.44 784 ordi 821 andi 823 pm4.72 832 stdcndc 850 stdcndcOLD 851 stdcn 852 dcnn 853 pm4.82 956 rnlem 982 3jaob 1336 xoranor 1419 falantru 1445 3impexp 1480 3impexpbicom 1481 alcom 1524 19.26 1527 19.3h 1599 19.3 1600 19.21h 1603 19.43 1674 19.9h 1689 excom 1710 19.41h 1731 19.41 1732 equcom 1752 equsalh 1772 equsex 1774 cbvalv1 1797 cbvexv1 1798 cbvalh 1799 cbvexh 1801 sbbii 1811 sbh 1822 equs45f 1848 sb6f 1849 sbcof2 1856 sbequ8 1893 sbidm 1897 sb5rf 1898 sb6rf 1899 equvin 1909 sbimv 1940 cbvalvw 1966 cbvexvw 1967 sbalyz 2050 eu2 2122 eu3h 2123 eu5 2125 mo3h 2131 euan 2134 axext4 2213 cleqh 2329 r19.26 2657 ralcom3 2699 ceqsex 2838 gencbvex 2847 gencbvex2 2848 gencbval 2849 eqvinc 2926 pm13.183 2941 rr19.3v 2942 rr19.28v 2943 reu6 2992 reu3 2993 sbnfc2 3185 difdif 3329 ddifnel 3335 ddifstab 3336 ssddif 3438 difin 3441 uneqin 3455 indifdir 3460 undif3ss 3465 difrab 3478 un00 3538 undifss 3572 ssdifeq0 3574 ralidm 3592 ralf0 3594 ralm 3595 elpr2 3688 snidb 3696 difsnb 3810 preq12b 3847 preqsn 3852 axpweq 4254 exmidn0m 4284 exmidsssn 4285 exmid0el 4287 exmidel 4288 exmidundif 4289 exmidundifim 4290 sspwb 4301 unipw 4302 opm 4319 opth 4322 ssopab2b 4364 elon2 4466 unexb 4532 eusvnfb 4544 eusv2nf 4546 ralxfrALT 4557 uniexb 4563 iunpw 4570 onsucb 4594 unon 4602 sucprcreg 4640 opthreg 4647 ordsuc 4654 dcextest 4672 peano2b 4706 opelxp 4748 opthprc 4769 relop 4871 issetid 4875 xpid11 4946 elres 5040 iss 5050 issref 5110 xpmlem 5148 sqxpeq0 5151 ssrnres 5170 dfrel2 5178 relrelss 5254 fn0 5442 funssxp 5492 f00 5516 f0bi 5517 dffo2 5551 ffoss 5603 f1o00 5607 fo00 5608 fv3 5649 dff2 5778 dffo4 5782 dffo5 5783 fmpt 5784 ffnfv 5792 fsn 5806 fsn2 5808 funop 5817 isores1 5937 ssoprab2b 6060 eqfnov2 6111 cnvoprab 6378 reldmtpos 6397 mapsn 6835 mapsncnv 6840 mptelixpg 6879 elixpsn 6880 ixpsnf1o 6881 en0 6945 en1 6949 dom0 6995 exmidpw 7066 exmidpweq 7067 pw1fin 7068 exmidpw2en 7070 undifdcss 7081 residfi 7103 fidcenum 7119 djuexb 7207 ctssdc 7276 exmidomni 7305 nninfinfwlpo 7343 nninfwlpo 7344 exmidfodomr 7378 iftrueb01 7404 exmidontri 7420 exmidontri2or 7424 onntri3or 7426 onntri2or 7427 dftap2 7433 exmidmotap 7443 elni2 7497 ltbtwnnqq 7598 enq0ref 7616 elnp1st2nd 7659 elrealeu 8012 elreal2 8013 le2tri3i 8251 elnn0nn 9407 elnnnn0b 9409 elnnnn0c 9410 elnnz 9452 elnn0z 9455 elnnz1 9465 elz2 9514 eluz2b2 9794 elnn1uz2 9798 elpqb 9841 elioo4g 10126 eluzfz2b 10225 fzm 10230 elfz1end 10247 fzass4 10254 elfz1b 10282 fz01or 10303 nn0fz0 10311 fzolb 10346 fzom 10357 elfzo0 10378 fzo1fzo0n0 10379 elfzo0z 10380 elfzo1 10386 infssuzex 10448 hash2en 11060 wrdexb 11078 0wrd0 11092 rexanuz 11494 rexuz3 11496 sqrt0rlem 11509 fisum0diag 11947 fprod0diagfz 12134 isprm6 12664 oddpwdclemdc 12690 nnoddn2prmb 12780 4sqlem4 12910 4sqexercise1 12916 ennnfone 12991 ctinfom 12994 ctinf 12996 fnpr2ob 13368 dfgrp2 13555 dfgrp3m 13627 dfgrp3me 13628 isnsg3 13739 invghm 13861 dvdsrzring 14561 zrhval 14575 tgclb 14733 xmetunirn 15026 dich0 15320 elply2 15403 2sqlem2 15788 umgrislfupgrenlem 15922 umgrislfupgrdom 15923 uspgrupgrushgr 15974 usgrumgruspgr 15977 usgruspgrben 15978 usgrislfuspgrdom 15982 bj-nnsn 16055 bdeq 16144 bdop 16196 bdunexb 16241 bj-2inf 16259 bj-nn0suc 16285 nnnninfen 16346 exmidsbth 16351 trirec0 16371 redc0 16384 reap0 16385 cndcap 16386 neap0mkv 16396 |
| Copyright terms: Public domain | W3C validator |