| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbii | GIF version | ||
| Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| impbii.1 | ⊢ (𝜑 → 𝜓) |
| impbii.2 | ⊢ (𝜓 → 𝜑) |
| Ref | Expression |
|---|---|
| impbii | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbii.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | impbii.2 | . 2 ⊢ (𝜓 → 𝜑) | |
| 3 | bi3 119 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 635 con2b 670 imnan 691 2false 702 pm5.21nii 705 pm4.8 708 oibabs 715 orcom 729 ioran 753 oridm 758 orbi2i 763 or12 767 pm4.44 780 ordi 817 andi 819 pm4.72 828 stdcndc 846 stdcndcOLD 847 stdcn 848 dcnn 849 pm4.82 952 rnlem 978 3jaob 1314 xoranor 1396 falantru 1422 3impexp 1456 3impexpbicom 1457 alcom 1500 19.26 1503 19.3h 1575 19.3 1576 19.21h 1579 19.43 1650 19.9h 1665 excom 1686 19.41h 1707 19.41 1708 equcom 1728 equsalh 1748 equsex 1750 cbvalv1 1773 cbvexv1 1774 cbvalh 1775 cbvexh 1777 sbbii 1787 sbh 1798 equs45f 1824 sb6f 1825 sbcof2 1832 sbequ8 1869 sbidm 1873 sb5rf 1874 sb6rf 1875 equvin 1885 sbimv 1916 cbvalvw 1942 cbvexvw 1943 sbalyz 2026 eu2 2097 eu3h 2098 eu5 2100 mo3h 2106 euan 2109 axext4 2188 cleqh 2304 r19.26 2631 ralcom3 2673 ceqsex 2809 gencbvex 2818 gencbvex2 2819 gencbval 2820 eqvinc 2895 pm13.183 2910 rr19.3v 2911 rr19.28v 2912 reu6 2961 reu3 2962 sbnfc2 3153 difdif 3297 ddifnel 3303 ddifstab 3304 ssddif 3406 difin 3409 uneqin 3423 indifdir 3428 undif3ss 3433 difrab 3446 un00 3506 undifss 3540 ssdifeq0 3542 ralidm 3560 ralf0 3562 ralm 3563 elpr2 3654 snidb 3662 difsnb 3775 preq12b 3810 preqsn 3815 axpweq 4214 exmidn0m 4244 exmidsssn 4245 exmid0el 4247 exmidel 4248 exmidundif 4249 exmidundifim 4250 sspwb 4259 unipw 4260 opm 4277 opth 4280 ssopab2b 4321 elon2 4421 unexb 4487 eusvnfb 4499 eusv2nf 4501 ralxfrALT 4512 uniexb 4518 iunpw 4525 onsucb 4549 unon 4557 sucprcreg 4595 opthreg 4602 ordsuc 4609 dcextest 4627 peano2b 4661 opelxp 4703 opthprc 4724 relop 4826 issetid 4830 xpid11 4899 elres 4992 iss 5002 issref 5062 xpmlem 5100 sqxpeq0 5103 ssrnres 5122 dfrel2 5130 relrelss 5206 fn0 5389 funssxp 5439 f00 5461 f0bi 5462 dffo2 5496 ffoss 5548 f1o00 5551 fo00 5552 fv3 5593 dff2 5718 dffo4 5722 dffo5 5723 fmpt 5724 ffnfv 5732 fsn 5746 fsn2 5748 isores1 5873 ssoprab2b 5992 eqfnov2 6043 cnvoprab 6310 reldmtpos 6329 mapsn 6767 mapsncnv 6772 mptelixpg 6811 elixpsn 6812 ixpsnf1o 6813 en0 6872 en1 6876 dom0 6917 exmidpw 6987 exmidpweq 6988 pw1fin 6989 exmidpw2en 6991 undifdcss 7002 residfi 7024 fidcenum 7040 djuexb 7128 ctssdc 7197 exmidomni 7226 nninfinfwlpo 7264 nninfwlpo 7265 exmidfodomr 7294 exmidontri 7333 exmidontri2or 7337 onntri3or 7339 onntri2or 7340 dftap2 7345 exmidmotap 7355 elni2 7409 ltbtwnnqq 7510 enq0ref 7528 elnp1st2nd 7571 elrealeu 7924 elreal2 7925 le2tri3i 8163 elnn0nn 9319 elnnnn0b 9321 elnnnn0c 9322 elnnz 9364 elnn0z 9367 elnnz1 9377 elz2 9426 eluz2b2 9706 elnn1uz2 9710 elpqb 9753 elioo4g 10038 eluzfz2b 10137 fzm 10142 elfz1end 10159 fzass4 10166 elfz1b 10194 fz01or 10215 nn0fz0 10223 fzolb 10258 fzom 10269 elfzo0 10287 fzo1fzo0n0 10288 elfzo0z 10289 elfzo1 10295 infssuzex 10357 wrdexb 10981 0wrd0 10995 rexanuz 11218 rexuz3 11220 sqrt0rlem 11233 fisum0diag 11671 fprod0diagfz 11858 isprm6 12388 oddpwdclemdc 12414 nnoddn2prmb 12504 4sqlem4 12634 4sqexercise1 12640 ennnfone 12715 ctinfom 12718 ctinf 12720 fnpr2ob 13090 dfgrp2 13277 dfgrp3m 13349 dfgrp3me 13350 isnsg3 13461 invghm 13583 dvdsrzring 14283 zrhval 14297 tgclb 14455 xmetunirn 14748 dich0 15042 elply2 15125 2sqlem2 15510 bj-nnsn 15533 bdeq 15623 bdop 15675 bdunexb 15720 bj-2inf 15738 bj-nn0suc 15764 nnnninfen 15822 exmidsbth 15827 trirec0 15847 redc0 15860 reap0 15861 cndcap 15862 neap0mkv 15872 |
| Copyright terms: Public domain | W3C validator |