ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.14dc GIF version

Theorem pm5.14dc 901
Description: A decidable proposition is implied by or implies other propositions. Based on theorem *5.14 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.)
Assertion
Ref Expression
pm5.14dc (DECID 𝜓 → ((𝜑𝜓) ∨ (𝜓𝜒)))

Proof of Theorem pm5.14dc
StepHypRef Expression
1 df-dc 825 . 2 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
2 ax-1 6 . . 3 (𝜓 → (𝜑𝜓))
3 ax-in2 605 . . 3 𝜓 → (𝜓𝜒))
42, 3orim12i 749 . 2 ((𝜓 ∨ ¬ 𝜓) → ((𝜑𝜓) ∨ (𝜓𝜒)))
51, 4sylbi 120 1 (DECID 𝜓 → ((𝜑𝜓) ∨ (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by:  pm5.13dc  902
  Copyright terms: Public domain W3C validator