| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.14dc | GIF version | ||
| Description: A decidable proposition is implied by or implies other propositions. Based on theorem *5.14 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.) |
| Ref | Expression |
|---|---|
| pm5.14dc | ⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ∨ (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 836 | . 2 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 2 | ax-1 6 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 3 | ax-in2 616 | . . 3 ⊢ (¬ 𝜓 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | orim12i 760 | . 2 ⊢ ((𝜓 ∨ ¬ 𝜓) → ((𝜑 → 𝜓) ∨ (𝜓 → 𝜒))) |
| 5 | 1, 4 | sylbi 121 | 1 ⊢ (DECID 𝜓 → ((𝜑 → 𝜓) ∨ (𝜓 → 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: pm5.13dc 913 |
| Copyright terms: Public domain | W3C validator |