| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orim12i | GIF version | ||
| Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| orim12i.1 | ⊢ (𝜑 → 𝜓) |
| orim12i.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | orcd 734 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
| 3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 3 | olcd 735 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
| 5 | 2, 4 | jaoi 717 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orim1i 761 orim2i 762 dcim 842 pm5.12dc 911 pm5.14dc 912 pm5.55dc 914 pm5.54dc 919 prlem2 976 xordc1 1404 19.43 1642 eueq3dc 2938 inssun 3404 abvor0dc 3475 ifmdc 3602 undifexmid 4227 pwssunim 4320 ordtriexmid 4558 ontriexmidim 4559 ordtri2orexmid 4560 ontr2exmid 4562 onsucsssucexmid 4564 onsucelsucexmid 4567 ordsoexmid 4599 0elsucexmid 4602 ordpwsucexmid 4607 ordtri2or2exmid 4608 ontri2orexmidim 4609 funcnvuni 5328 oprabidlem 5956 2oconcl 6506 inffiexmid 6976 unfiexmid 6988 ctssexmid 7225 exmidonfinlem 7272 sup3exmid 9001 zeo 9448 ef0lem 11842 |
| Copyright terms: Public domain | W3C validator |