| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orim12i | GIF version | ||
| Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| orim12i.1 | ⊢ (𝜑 → 𝜓) |
| orim12i.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | orcd 735 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
| 3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 3 | olcd 736 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
| 5 | 2, 4 | jaoi 718 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orim1i 762 orim2i 763 dcim 843 pm5.12dc 912 pm5.14dc 913 pm5.55dc 915 pm5.54dc 920 prlem2 977 xordc1 1413 19.43 1652 eueq3dc 2951 inssun 3417 abvor0dc 3488 ifmdc 3616 undifexmid 4244 pwssunim 4338 ordtriexmid 4576 ontriexmidim 4577 ordtri2orexmid 4578 ontr2exmid 4580 onsucsssucexmid 4582 onsucelsucexmid 4585 ordsoexmid 4617 0elsucexmid 4620 ordpwsucexmid 4625 ordtri2or2exmid 4626 ontri2orexmidim 4627 funcnvuni 5351 oprabidlem 5987 2oconcl 6537 inffiexmid 7017 unfiexmid 7029 ctssexmid 7266 exmidonfinlem 7316 sup3exmid 9045 zeo 9493 ef0lem 12041 |
| Copyright terms: Public domain | W3C validator |