ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim12i GIF version

Theorem orim12i 761
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.)
Hypotheses
Ref Expression
orim12i.1 (𝜑𝜓)
orim12i.2 (𝜒𝜃)
Assertion
Ref Expression
orim12i ((𝜑𝜒) → (𝜓𝜃))

Proof of Theorem orim12i
StepHypRef Expression
1 orim12i.1 . . 3 (𝜑𝜓)
21orcd 735 . 2 (𝜑 → (𝜓𝜃))
3 orim12i.2 . . 3 (𝜒𝜃)
43olcd 736 . 2 (𝜒 → (𝜓𝜃))
52, 4jaoi 718 1 ((𝜑𝜒) → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orim1i  762  orim2i  763  dcim  843  pm5.12dc  912  pm5.14dc  913  pm5.55dc  915  pm5.54dc  920  prlem2  977  xordc1  1413  19.43  1652  eueq3dc  2951  inssun  3417  abvor0dc  3488  ifmdc  3616  undifexmid  4244  pwssunim  4338  ordtriexmid  4576  ontriexmidim  4577  ordtri2orexmid  4578  ontr2exmid  4580  onsucsssucexmid  4582  onsucelsucexmid  4585  ordsoexmid  4617  0elsucexmid  4620  ordpwsucexmid  4625  ordtri2or2exmid  4626  ontri2orexmidim  4627  funcnvuni  5351  oprabidlem  5987  2oconcl  6537  inffiexmid  7017  unfiexmid  7029  ctssexmid  7266  exmidonfinlem  7316  sup3exmid  9045  zeo  9493  ef0lem  12041
  Copyright terms: Public domain W3C validator