| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orim12i | GIF version | ||
| Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| orim12i.1 | ⊢ (𝜑 → 𝜓) |
| orim12i.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | orcd 738 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
| 3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 4 | 3 | olcd 739 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
| 5 | 2, 4 | jaoi 721 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orim1i 765 orim2i 766 dcim 846 pm5.12dc 915 pm5.14dc 916 pm5.55dc 918 pm5.54dc 923 prlem2 980 ifpdc 985 ifpor 993 xordc1 1435 19.43 1674 eueq3dc 2977 inssun 3444 abvor0dc 3515 ifmdc 3645 undifexmid 4276 pwssunim 4372 ordtriexmid 4610 ontriexmidim 4611 ordtri2orexmid 4612 ontr2exmid 4614 onsucsssucexmid 4616 onsucelsucexmid 4619 ordsoexmid 4651 0elsucexmid 4654 ordpwsucexmid 4659 ordtri2or2exmid 4660 ontri2orexmidim 4661 funcnvuni 5386 oprabidlem 6025 2oconcl 6575 inffiexmid 7056 unfiexmid 7068 ctssexmid 7305 exmidonfinlem 7359 sup3exmid 9092 zeo 9540 ef0lem 12157 |
| Copyright terms: Public domain | W3C validator |