![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orim12i | GIF version |
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
Ref | Expression |
---|---|
orim12i.1 | ⊢ (𝜑 → 𝜓) |
orim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 688 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | olcd 689 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
5 | 2, 4 | jaoi 672 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 665 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orim1i 713 orim2i 714 dcim 823 pm5.12dc 855 pm5.14dc 856 pm5.55dc 858 pm5.54dc 866 prlem2 921 xordc1 1330 19.43 1565 eueq3dc 2790 inssun 3240 abvor0dc 3310 ifmdc 3432 undifexmid 4034 pwssunim 4120 ordtriexmid 4351 ordtri2orexmid 4352 ontr2exmid 4354 onsucsssucexmid 4356 onsucelsucexmid 4359 ordsoexmid 4391 0elsucexmid 4394 ordpwsucexmid 4399 ordtri2or2exmid 4400 funcnvuni 5096 oprabidlem 5694 2oconcl 6217 inffiexmid 6676 unfiexmid 6682 djur 6811 djuun 6814 zeo 8912 ef0lem 11011 |
Copyright terms: Public domain | W3C validator |