![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orim12i | GIF version |
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
Ref | Expression |
---|---|
orim12i.1 | ⊢ (𝜑 → 𝜓) |
orim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 734 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | olcd 735 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
5 | 2, 4 | jaoi 717 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orim1i 761 orim2i 762 dcim 842 pm5.12dc 911 pm5.14dc 912 pm5.55dc 914 pm5.54dc 919 prlem2 976 xordc1 1404 19.43 1639 eueq3dc 2935 inssun 3400 abvor0dc 3471 ifmdc 3598 undifexmid 4223 pwssunim 4316 ordtriexmid 4554 ontriexmidim 4555 ordtri2orexmid 4556 ontr2exmid 4558 onsucsssucexmid 4560 onsucelsucexmid 4563 ordsoexmid 4595 0elsucexmid 4598 ordpwsucexmid 4603 ordtri2or2exmid 4604 ontri2orexmidim 4605 funcnvuni 5324 oprabidlem 5950 2oconcl 6494 inffiexmid 6964 unfiexmid 6976 ctssexmid 7211 exmidonfinlem 7255 sup3exmid 8978 zeo 9425 ef0lem 11806 |
Copyright terms: Public domain | W3C validator |