Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orim12i | GIF version |
Description: Disjoin antecedents and consequents of two premises. (Contributed by NM, 6-Jun-1994.) (Proof shortened by Wolf Lammen, 25-Jul-2012.) |
Ref | Expression |
---|---|
orim12i.1 | ⊢ (𝜑 → 𝜓) |
orim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
orim12i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | orcd 723 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
3 | orim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | olcd 724 | . 2 ⊢ (𝜒 → (𝜓 ∨ 𝜃)) |
5 | 2, 4 | jaoi 706 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orim1i 750 orim2i 751 dcim 831 pm5.12dc 900 pm5.14dc 901 pm5.55dc 903 pm5.54dc 908 prlem2 964 xordc1 1383 19.43 1616 eueq3dc 2900 inssun 3362 abvor0dc 3432 ifmdc 3558 undifexmid 4172 pwssunim 4262 ordtriexmid 4498 ontriexmidim 4499 ordtri2orexmid 4500 ontr2exmid 4502 onsucsssucexmid 4504 onsucelsucexmid 4507 ordsoexmid 4539 0elsucexmid 4542 ordpwsucexmid 4547 ordtri2or2exmid 4548 ontri2orexmidim 4549 funcnvuni 5257 oprabidlem 5873 2oconcl 6407 inffiexmid 6872 unfiexmid 6883 ctssexmid 7114 exmidonfinlem 7149 sup3exmid 8852 zeo 9296 ef0lem 11601 |
Copyright terms: Public domain | W3C validator |