ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp113 GIF version

Theorem simp113 1128
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp113 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜒)

Proof of Theorem simp113
StepHypRef Expression
1 simp13 1029 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)
213ad2ant1 1018 1 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator