Theorem List for Intuitionistic Logic Explorer - 1101-1200 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | simpl23 1101 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| |
| Theorem | simpl31 1102 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
| |
| Theorem | simpl32 1103 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| |
| Theorem | simpl33 1104 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
| |
| Theorem | simpr11 1105 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜑) |
| |
| Theorem | simpr12 1106 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜓) |
| |
| Theorem | simpr13 1107 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜒) |
| |
| Theorem | simpr21 1108 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) |
| |
| Theorem | simpr22 1109 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜓) |
| |
| Theorem | simpr23 1110 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜒) |
| |
| Theorem | simpr31 1111 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| |
| Theorem | simpr32 1112 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
| |
| Theorem | simpr33 1113 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
| |
| Theorem | simp1l1 1114 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
| |
| Theorem | simp1l2 1115 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| |
| Theorem | simp1l3 1116 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| |
| Theorem | simp1r1 1117 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
| |
| Theorem | simp1r2 1118 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| |
| Theorem | simp1r3 1119 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏 ∧ 𝜂) → 𝜒) |
| |
| Theorem | simp2l1 1120 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜑) |
| |
| Theorem | simp2l2 1121 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| |
| Theorem | simp2l3 1122 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜒) |
| |
| Theorem | simp2r1 1123 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
| |
| Theorem | simp2r2 1124 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜓) |
| |
| Theorem | simp2r3 1125 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
| |
| Theorem | simp3l1 1126 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜑) |
| |
| Theorem | simp3l2 1127 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
| |
| Theorem | simp3l3 1128 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
| |
| Theorem | simp3r1 1129 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| |
| Theorem | simp3r2 1130 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
| |
| Theorem | simp3r3 1131 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
| |
| Theorem | simp11l 1132 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
| |
| Theorem | simp11r 1133 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| |
| Theorem | simp12l 1134 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
| |
| Theorem | simp12r 1135 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| |
| Theorem | simp13l 1136 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
| |
| Theorem | simp13r 1137 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| |
| Theorem | simp21l 1138 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜑) |
| |
| Theorem | simp21r 1139 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| |
| Theorem | simp22l 1140 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜑) |
| |
| Theorem | simp22r 1141 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
| |
| Theorem | simp23l 1142 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜑) |
| |
| Theorem | simp23r 1143 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
| |
| Theorem | simp31l 1144 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| |
| Theorem | simp31r 1145 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| |
| Theorem | simp32l 1146 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
| |
| Theorem | simp32r 1147 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
| |
| Theorem | simp33l 1148 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
| |
| Theorem | simp33r 1149 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
| |
| Theorem | simp111 1150 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| |
| Theorem | simp112 1151 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
| |
| Theorem | simp113 1152 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| |
| Theorem | simp121 1153 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| |
| Theorem | simp122 1154 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
| |
| Theorem | simp123 1155 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| |
| Theorem | simp131 1156 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
| |
| Theorem | simp132 1157 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
| |
| Theorem | simp133 1158 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
| |
| Theorem | simp211 1159 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜑) |
| |
| Theorem | simp212 1160 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜓) |
| |
| Theorem | simp213 1161 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜒) |
| |
| Theorem | simp221 1162 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜑) |
| |
| Theorem | simp222 1163 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜓) |
| |
| Theorem | simp223 1164 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜒) |
| |
| Theorem | simp231 1165 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜁) → 𝜑) |
| |
| Theorem | simp232 1166 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜁) → 𝜓) |
| |
| Theorem | simp233 1167 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜁) → 𝜒) |
| |
| Theorem | simp311 1168 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ 𝜁 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜑) |
| |
| Theorem | simp312 1169 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ 𝜁 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜓) |
| |
| Theorem | simp313 1170 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ 𝜁 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜒) |
| |
| Theorem | simp321 1171 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) |
| |
| Theorem | simp322 1172 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜓) |
| |
| Theorem | simp323 1173 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜒) |
| |
| Theorem | simp331 1174 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
| |
| Theorem | simp332 1175 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
| |
| Theorem | simp333 1176 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
| ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
| |
| Theorem | 3adantl1 1177 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
24-Feb-2005.)
|
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3adantl2 1178 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
24-Feb-2005.)
|
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3adantl3 1179 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
24-Feb-2005.)
|
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3adantr1 1180 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
27-Apr-2005.)
|
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| |
| Theorem | 3adantr2 1181 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
27-Apr-2005.)
|
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| |
| Theorem | 3adantr3 1182 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
27-Apr-2005.)
|
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| |
| Theorem | 3ad2antl1 1183 |
Deduction adding conjuncts to antecedent. (Contributed by NM,
4-Aug-2007.)
|
| ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3ad2antl2 1184 |
Deduction adding conjuncts to antecedent. (Contributed by NM,
4-Aug-2007.)
|
| ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3ad2antl3 1185 |
Deduction adding conjuncts to antecedent. (Contributed by NM,
4-Aug-2007.)
|
| ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| |
| Theorem | 3ad2antr1 1186 |
Deduction adding a conjuncts to antecedent. (Contributed by NM,
25-Dec-2007.)
|
| ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
| |
| Theorem | 3ad2antr2 1187 |
Deduction adding a conjuncts to antecedent. (Contributed by NM,
27-Dec-2007.)
|
| ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
| |
| Theorem | 3ad2antr3 1188 |
Deduction adding a conjuncts to antecedent. (Contributed by NM,
30-Dec-2007.)
|
| ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
| |
| Theorem | 3anibar 1189 |
Remove a hypothesis from the second member of a biconditional.
(Contributed by FL, 22-Jul-2008.)
|
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ (𝜒 ∧ 𝜏))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) |
| |
| Theorem | 3mix1 1190 |
Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
|
| ⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
| |
| Theorem | 3mix2 1191 |
Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
|
| ⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
| |
| Theorem | 3mix3 1192 |
Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
|
| ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
| |
| Theorem | 3mix1i 1193 |
Introduction in triple disjunction. (Contributed by Mario Carneiro,
6-Oct-2014.)
|
| ⊢ 𝜑 ⇒ ⊢ (𝜑 ∨ 𝜓 ∨ 𝜒) |
| |
| Theorem | 3mix2i 1194 |
Introduction in triple disjunction. (Contributed by Mario Carneiro,
6-Oct-2014.)
|
| ⊢ 𝜑 ⇒ ⊢ (𝜓 ∨ 𝜑 ∨ 𝜒) |
| |
| Theorem | 3mix3i 1195 |
Introduction in triple disjunction. (Contributed by Mario Carneiro,
6-Oct-2014.)
|
| ⊢ 𝜑 ⇒ ⊢ (𝜓 ∨ 𝜒 ∨ 𝜑) |
| |
| Theorem | 3mix1d 1196 |
Deduction introducing triple disjunction. (Contributed by Scott Fenton,
8-Jun-2011.)
|
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| |
| Theorem | 3mix2d 1197 |
Deduction introducing triple disjunction. (Contributed by Scott Fenton,
8-Jun-2011.)
|
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
| |
| Theorem | 3mix3d 1198 |
Deduction introducing triple disjunction. (Contributed by Scott Fenton,
8-Jun-2011.)
|
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| |
| Theorem | 3pm3.2i 1199 |
Infer conjunction of premises. (Contributed by NM, 10-Feb-1995.)
|
| ⊢ 𝜑
& ⊢ 𝜓
& ⊢ 𝜒 ⇒ ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| |
| Theorem | pm3.2an3 1200 |
pm3.2 139 for a triple conjunction. (Contributed by
Alan Sare,
24-Oct-2011.)
|
| ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) |