Theorem List for Intuitionistic Logic Explorer - 1101-1200 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | simp3r2 1101 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
|
Theorem | simp3r3 1102 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
|
Theorem | simp11l 1103 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
|
Theorem | simp11r 1104 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
|
Theorem | simp12l 1105 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
|
Theorem | simp12r 1106 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
|
Theorem | simp13l 1107 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜑) |
|
Theorem | simp13r 1108 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
|
Theorem | simp21l 1109 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜑) |
|
Theorem | simp21r 1110 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
|
Theorem | simp22l 1111 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜑) |
|
Theorem | simp22r 1112 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
|
Theorem | simp23l 1113 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜑) |
|
Theorem | simp23r 1114 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
|
Theorem | simp31l 1115 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
|
Theorem | simp31r 1116 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
|
Theorem | simp32l 1117 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜑) |
|
Theorem | simp32r 1118 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃)) → 𝜓) |
|
Theorem | simp33l 1119 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
|
Theorem | simp33r 1120 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜏 ∧ 𝜂 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
|
Theorem | simp111 1121 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
|
Theorem | simp112 1122 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
|
Theorem | simp113 1123 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
|
Theorem | simp121 1124 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
|
Theorem | simp122 1125 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
|
Theorem | simp123 1126 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
|
Theorem | simp131 1127 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
|
Theorem | simp132 1128 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
|
Theorem | simp133 1129 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜒) |
|
Theorem | simp211 1130 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜑) |
|
Theorem | simp212 1131 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜓) |
|
Theorem | simp213 1132 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜁) → 𝜒) |
|
Theorem | simp221 1133 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜑) |
|
Theorem | simp222 1134 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜓) |
|
Theorem | simp223 1135 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜒) |
|
Theorem | simp231 1136 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜁) → 𝜑) |
|
Theorem | simp232 1137 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜁) → 𝜓) |
|
Theorem | simp233 1138 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜁) → 𝜒) |
|
Theorem | simp311 1139 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ 𝜁 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜑) |
|
Theorem | simp312 1140 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ 𝜁 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜓) |
|
Theorem | simp313 1141 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ 𝜁 ∧ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏)) → 𝜒) |
|
Theorem | simp321 1142 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜑) |
|
Theorem | simp322 1143 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜓) |
|
Theorem | simp323 1144 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜒) |
|
Theorem | simp331 1145 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
|
Theorem | simp332 1146 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
|
Theorem | simp333 1147 |
Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
|
⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
|
Theorem | 3adantl1 1148 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
24-Feb-2005.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜏 ∧ 𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
|
Theorem | 3adantl2 1149 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
24-Feb-2005.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
|
Theorem | 3adantl3 1150 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
24-Feb-2005.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
|
Theorem | 3adantr1 1151 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
27-Apr-2005.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
|
Theorem | 3adantr2 1152 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
27-Apr-2005.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
|
Theorem | 3adantr3 1153 |
Deduction adding a conjunct to antecedent. (Contributed by NM,
27-Apr-2005.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
|
Theorem | 3ad2antl1 1154 |
Deduction adding conjuncts to antecedent. (Contributed by NM,
4-Aug-2007.)
|
⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
|
Theorem | 3ad2antl2 1155 |
Deduction adding conjuncts to antecedent. (Contributed by NM,
4-Aug-2007.)
|
⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜏) ∧ 𝜒) → 𝜃) |
|
Theorem | 3ad2antl3 1156 |
Deduction adding conjuncts to antecedent. (Contributed by NM,
4-Aug-2007.)
|
⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜓 ∧ 𝜏 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
|
Theorem | 3ad2antr1 1157 |
Deduction adding a conjuncts to antecedent. (Contributed by NM,
25-Dec-2007.)
|
⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
|
Theorem | 3ad2antr2 1158 |
Deduction adding a conjuncts to antecedent. (Contributed by NM,
27-Dec-2007.)
|
⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜏)) → 𝜃) |
|
Theorem | 3ad2antr3 1159 |
Deduction adding a conjuncts to antecedent. (Contributed by NM,
30-Dec-2007.)
|
⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) |
|
Theorem | 3anibar 1160 |
Remove a hypothesis from the second member of a biconditional.
(Contributed by FL, 22-Jul-2008.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ (𝜒 ∧ 𝜏))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) |
|
Theorem | 3mix1 1161 |
Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
|
⊢ (𝜑 → (𝜑 ∨ 𝜓 ∨ 𝜒)) |
|
Theorem | 3mix2 1162 |
Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
|
⊢ (𝜑 → (𝜓 ∨ 𝜑 ∨ 𝜒)) |
|
Theorem | 3mix3 1163 |
Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
|
⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜑)) |
|
Theorem | 3mix1i 1164 |
Introduction in triple disjunction. (Contributed by Mario Carneiro,
6-Oct-2014.)
|
⊢ 𝜑 ⇒ ⊢ (𝜑 ∨ 𝜓 ∨ 𝜒) |
|
Theorem | 3mix2i 1165 |
Introduction in triple disjunction. (Contributed by Mario Carneiro,
6-Oct-2014.)
|
⊢ 𝜑 ⇒ ⊢ (𝜓 ∨ 𝜑 ∨ 𝜒) |
|
Theorem | 3mix3i 1166 |
Introduction in triple disjunction. (Contributed by Mario Carneiro,
6-Oct-2014.)
|
⊢ 𝜑 ⇒ ⊢ (𝜓 ∨ 𝜒 ∨ 𝜑) |
|
Theorem | 3mix1d 1167 |
Deduction introducing triple disjunction. (Contributed by Scott Fenton,
8-Jun-2011.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
|
Theorem | 3mix2d 1168 |
Deduction introducing triple disjunction. (Contributed by Scott Fenton,
8-Jun-2011.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
|
Theorem | 3mix3d 1169 |
Deduction introducing triple disjunction. (Contributed by Scott Fenton,
8-Jun-2011.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
|
Theorem | 3pm3.2i 1170 |
Infer conjunction of premises. (Contributed by NM, 10-Feb-1995.)
|
⊢ 𝜑
& ⊢ 𝜓
& ⊢ 𝜒 ⇒ ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
|
Theorem | pm3.2an3 1171 |
pm3.2 138 for a triple conjunction. (Contributed by
Alan Sare,
24-Oct-2011.)
|
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) |
|
Theorem | 3jca 1172 |
Join consequents with conjunction. (Contributed by NM, 9-Apr-1994.)
|
⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
|
Theorem | 3jcad 1173 |
Deduction conjoining the consequents of three implications.
(Contributed by NM, 25-Sep-2005.)
|
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
|
Theorem | mpbir3an 1174 |
Detach a conjunction of truths in a biconditional. (Contributed by NM,
16-Sep-2011.) (Revised by NM, 9-Jan-2015.)
|
⊢ 𝜓
& ⊢ 𝜒
& ⊢ 𝜃
& ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) ⇒ ⊢ 𝜑 |
|
Theorem | mpbir3and 1175 |
Detach a conjunction of truths in a biconditional. (Contributed by
Mario Carneiro, 11-May-2014.)
|
⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜑 → 𝜏)
& ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) ⇒ ⊢ (𝜑 → 𝜓) |
|
Theorem | syl3anbrc 1176 |
Syllogism inference. (Contributed by Mario Carneiro, 11-May-2014.)
|
⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜏 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) ⇒ ⊢ (𝜑 → 𝜏) |
|
Theorem | syl21anbrc 1177 |
Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.)
|
⊢ (𝜑 → 𝜓)
& ⊢ (𝜑 → 𝜒)
& ⊢ (𝜑 → 𝜃)
& ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) ⇒ ⊢ (𝜑 → 𝜏) |
|
Theorem | 3imp3i2an 1178 |
An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
(Proof shortened by Wolf Lammen, 13-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)
& ⊢ ((𝜑 ∧ 𝜒) → 𝜏)
& ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) |
|
Theorem | 3anim123i 1179 |
Join antecedents and consequents with conjunction. (Contributed by NM,
8-Apr-1994.)
|
⊢ (𝜑 → 𝜓)
& ⊢ (𝜒 → 𝜃)
& ⊢ (𝜏 → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
|
Theorem | 3anim1i 1180 |
Add two conjuncts to antecedent and consequent. (Contributed by Jeff
Hankins, 16-Aug-2009.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
|
Theorem | 3anim2i 1181 |
Add two conjuncts to antecedent and consequent. (Contributed by AV,
21-Nov-2019.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) → (𝜒 ∧ 𝜓 ∧ 𝜃)) |
|
Theorem | 3anim3i 1182 |
Add two conjuncts to antecedent and consequent. (Contributed by Jeff
Hankins, 19-Aug-2009.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) → (𝜒 ∧ 𝜃 ∧ 𝜓)) |
|
Theorem | 3anbi123i 1183 |
Join 3 biconditionals with conjunction. (Contributed by NM,
21-Apr-1994.)
|
⊢ (𝜑 ↔ 𝜓)
& ⊢ (𝜒 ↔ 𝜃)
& ⊢ (𝜏 ↔ 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
|
Theorem | 3orbi123i 1184 |
Join 3 biconditionals with disjunction. (Contributed by NM,
17-May-1994.)
|
⊢ (𝜑 ↔ 𝜓)
& ⊢ (𝜒 ↔ 𝜃)
& ⊢ (𝜏 ↔ 𝜂) ⇒ ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)) |
|
Theorem | 3anbi1i 1185 |
Inference adding two conjuncts to each side of a biconditional.
(Contributed by NM, 8-Sep-2006.)
|
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
|
Theorem | 3anbi2i 1186 |
Inference adding two conjuncts to each side of a biconditional.
(Contributed by NM, 8-Sep-2006.)
|
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) ↔ (𝜒 ∧ 𝜓 ∧ 𝜃)) |
|
Theorem | 3anbi3i 1187 |
Inference adding two conjuncts to each side of a biconditional.
(Contributed by NM, 8-Sep-2006.)
|
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) |
|
Theorem | 3imp 1188 |
Importation inference. (Contributed by NM, 8-Apr-1994.)
|
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | 3impa 1189 |
Importation from double to triple conjunction. (Contributed by NM,
20-Aug-1995.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | ex3 1190 |
Apply ex 114 to a hypothesis with a 3-right-nested
conjunction antecedent,
with the antecedent of the assertion being a triple conjunction rather
than a 2-right-nested conjunction. (Contributed by Alan Sare,
22-Apr-2018.)
|
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
|
Theorem | 3imp31 1191 |
The importation inference 3imp 1188 with commutation of the first and third
conjuncts of the assertion relative to the hypothesis. (Contributed by
Alan Sare, 11-Sep-2016.)
|
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
|
Theorem | 3imp231 1192 |
Importation inference. (Contributed by Alan Sare, 17-Oct-2017.)
|
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
|
Theorem | 3imp21 1193 |
The importation inference 3imp 1188 with commutation of the first and
second conjuncts of the assertion relative to the hypothesis.
(Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1202
by Wolf Lammen, 23-Jun-2022.)
|
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
|
Theorem | 3impb 1194 |
Importation from double to triple conjunction. (Contributed by NM,
20-Aug-1995.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | 3impia 1195 |
Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
|
⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | 3impib 1196 |
Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
|
⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
|
Theorem | 3exp 1197 |
Exportation inference. (Contributed by NM, 30-May-1994.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
|
Theorem | 3expa 1198 |
Exportation from triple to double conjunction. (Contributed by NM,
20-Aug-1995.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
|
Theorem | 3expb 1199 |
Exportation from triple to double conjunction. (Contributed by NM,
20-Aug-1995.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
|
Theorem | 3expia 1200 |
Exportation from triple conjunction. (Contributed by NM,
19-May-2007.)
|
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |