HomeHome Intuitionistic Logic Explorer
Theorem List (p. 12 of 137)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1101-1200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsimp22l 1101 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜑)
 
Theoremsimp22r 1102 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓)
 
Theoremsimp23l 1103 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓)) ∧ 𝜂) → 𝜑)
 
Theoremsimp23r 1104 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏 ∧ (𝜒𝜃 ∧ (𝜑𝜓)) ∧ 𝜂) → 𝜓)
 
Theoremsimp31l 1105 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏𝜂 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜑)
 
Theoremsimp31r 1106 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏𝜂 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)
 
Theoremsimp32l 1107 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏𝜂 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜑)
 
Theoremsimp32r 1108 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏𝜂 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)
 
Theoremsimp33l 1109 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜑)
 
Theoremsimp33r 1110 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜏𝜂 ∧ (𝜒𝜃 ∧ (𝜑𝜓))) → 𝜓)
 
Theoremsimp111 1111 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜑)
 
Theoremsimp112 1112 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜓)
 
Theoremsimp113 1113 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜒)
 
Theoremsimp121 1114 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜑)
 
Theoremsimp122 1115 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜓)
 
Theoremsimp123 1116 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜂𝜁) → 𝜒)
 
Theoremsimp131 1117 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜑)
 
Theoremsimp132 1118 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜓)
 
Theoremsimp133 1119 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜂𝜁) → 𝜒)
 
Theoremsimp211 1120 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜑)
 
Theoremsimp212 1121 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜓)
 
Theoremsimp213 1122 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜁) → 𝜒)
 
Theoremsimp221 1123 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜑)
 
Theoremsimp222 1124 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜓)
 
Theoremsimp223 1125 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜒)
 
Theoremsimp231 1126 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜁) → 𝜑)
 
Theoremsimp232 1127 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜁) → 𝜓)
 
Theoremsimp233 1128 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜁) → 𝜒)
 
Theoremsimp311 1129 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜑)
 
Theoremsimp312 1130 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜓)
 
Theoremsimp313 1131 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂𝜁 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜒)
 
Theoremsimp321 1132 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜑)
 
Theoremsimp322 1133 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜓)
 
Theoremsimp323 1134 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜒)
 
Theoremsimp331 1135 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)
 
Theoremsimp332 1136 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)
 
Theoremsimp333 1137 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)
 
Theorem3adantl1 1138 Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
(((𝜑𝜓) ∧ 𝜒) → 𝜃)       (((𝜏𝜑𝜓) ∧ 𝜒) → 𝜃)
 
Theorem3adantl2 1139 Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
(((𝜑𝜓) ∧ 𝜒) → 𝜃)       (((𝜑𝜏𝜓) ∧ 𝜒) → 𝜃)
 
Theorem3adantl3 1140 Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
(((𝜑𝜓) ∧ 𝜒) → 𝜃)       (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)
 
Theorem3adantr1 1141 Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
((𝜑 ∧ (𝜓𝜒)) → 𝜃)       ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)
 
Theorem3adantr2 1142 Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
((𝜑 ∧ (𝜓𝜒)) → 𝜃)       ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
 
Theorem3adantr3 1143 Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
((𝜑 ∧ (𝜓𝜒)) → 𝜃)       ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)
 
Theorem3ad2antl1 1144 Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
((𝜑𝜒) → 𝜃)       (((𝜑𝜓𝜏) ∧ 𝜒) → 𝜃)
 
Theorem3ad2antl2 1145 Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
((𝜑𝜒) → 𝜃)       (((𝜓𝜑𝜏) ∧ 𝜒) → 𝜃)
 
Theorem3ad2antl3 1146 Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
((𝜑𝜒) → 𝜃)       (((𝜓𝜏𝜑) ∧ 𝜒) → 𝜃)
 
Theorem3ad2antr1 1147 Deduction adding a conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.)
((𝜑𝜒) → 𝜃)       ((𝜑 ∧ (𝜒𝜓𝜏)) → 𝜃)
 
Theorem3ad2antr2 1148 Deduction adding a conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.)
((𝜑𝜒) → 𝜃)       ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)
 
Theorem3ad2antr3 1149 Deduction adding a conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.)
((𝜑𝜒) → 𝜃)       ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
 
Theorem3anibar 1150 Remove a hypothesis from the second member of a biconditional. (Contributed by FL, 22-Jul-2008.)
((𝜑𝜓𝜒) → (𝜃 ↔ (𝜒𝜏)))       ((𝜑𝜓𝜒) → (𝜃𝜏))
 
Theorem3mix1 1151 Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
(𝜑 → (𝜑𝜓𝜒))
 
Theorem3mix2 1152 Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
(𝜑 → (𝜓𝜑𝜒))
 
Theorem3mix3 1153 Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
(𝜑 → (𝜓𝜒𝜑))
 
Theorem3mix1i 1154 Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
𝜑       (𝜑𝜓𝜒)
 
Theorem3mix2i 1155 Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
𝜑       (𝜓𝜑𝜒)
 
Theorem3mix3i 1156 Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
𝜑       (𝜓𝜒𝜑)
 
Theorem3mix1d 1157 Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
(𝜑𝜓)       (𝜑 → (𝜓𝜒𝜃))
 
Theorem3mix2d 1158 Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
(𝜑𝜓)       (𝜑 → (𝜒𝜓𝜃))
 
Theorem3mix3d 1159 Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
(𝜑𝜓)       (𝜑 → (𝜒𝜃𝜓))
 
Theorem3pm3.2i 1160 Infer conjunction of premises. (Contributed by NM, 10-Feb-1995.)
𝜑    &   𝜓    &   𝜒       (𝜑𝜓𝜒)
 
Theorempm3.2an3 1161 pm3.2 138 for a triple conjunction. (Contributed by Alan Sare, 24-Oct-2011.)
(𝜑 → (𝜓 → (𝜒 → (𝜑𝜓𝜒))))
 
Theorem3jca 1162 Join consequents with conjunction. (Contributed by NM, 9-Apr-1994.)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜑𝜃)       (𝜑 → (𝜓𝜒𝜃))
 
Theorem3jcad 1163 Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓𝜃))    &   (𝜑 → (𝜓𝜏))       (𝜑 → (𝜓 → (𝜒𝜃𝜏)))
 
Theoremmpbir3an 1164 Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.)
𝜓    &   𝜒    &   𝜃    &   (𝜑 ↔ (𝜓𝜒𝜃))       𝜑
 
Theoremmpbir3and 1165 Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.)
(𝜑𝜒)    &   (𝜑𝜃)    &   (𝜑𝜏)    &   (𝜑 → (𝜓 ↔ (𝜒𝜃𝜏)))       (𝜑𝜓)
 
Theoremsyl3anbrc 1166 Syllogism inference. (Contributed by Mario Carneiro, 11-May-2014.)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜑𝜃)    &   (𝜏 ↔ (𝜓𝜒𝜃))       (𝜑𝜏)
 
Theorem3anim123i 1167 Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.)
(𝜑𝜓)    &   (𝜒𝜃)    &   (𝜏𝜂)       ((𝜑𝜒𝜏) → (𝜓𝜃𝜂))
 
Theorem3anim1i 1168 Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
(𝜑𝜓)       ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))
 
Theorem3anim2i 1169 Add two conjuncts to antecedent and consequent. (Contributed by AV, 21-Nov-2019.)
(𝜑𝜓)       ((𝜒𝜑𝜃) → (𝜒𝜓𝜃))
 
Theorem3anim3i 1170 Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.)
(𝜑𝜓)       ((𝜒𝜃𝜑) → (𝜒𝜃𝜓))
 
Theorem3anbi123i 1171 Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.)
(𝜑𝜓)    &   (𝜒𝜃)    &   (𝜏𝜂)       ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))
 
Theorem3orbi123i 1172 Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.)
(𝜑𝜓)    &   (𝜒𝜃)    &   (𝜏𝜂)       ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))
 
Theorem3anbi1i 1173 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
(𝜑𝜓)       ((𝜑𝜒𝜃) ↔ (𝜓𝜒𝜃))
 
Theorem3anbi2i 1174 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
(𝜑𝜓)       ((𝜒𝜑𝜃) ↔ (𝜒𝜓𝜃))
 
Theorem3anbi3i 1175 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
(𝜑𝜓)       ((𝜒𝜃𝜑) ↔ (𝜒𝜃𝜓))
 
Theorem3imp 1176 Importation inference. (Contributed by NM, 8-Apr-1994.)
(𝜑 → (𝜓 → (𝜒𝜃)))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorem3impa 1177 Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.)
(((𝜑𝜓) ∧ 𝜒) → 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theorem3imp31 1178 The importation inference 3imp 1176 with commutation of the first and third conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.)
(𝜑 → (𝜓 → (𝜒𝜃)))       ((𝜒𝜓𝜑) → 𝜃)
 
Theorem3imp231 1179 Importation inference. (Contributed by Alan Sare, 17-Oct-2017.)
(𝜑 → (𝜓 → (𝜒𝜃)))       ((𝜓𝜒𝜑) → 𝜃)
 
Theorem3imp21 1180 The importation inference 3imp 1176 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1189 by Wolf Lammen, 23-Jun-2022.)
(𝜑 → (𝜓 → (𝜒𝜃)))       ((𝜓𝜑𝜒) → 𝜃)
 
Theorem3impb 1181 Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.)
((𝜑 ∧ (𝜓𝜒)) → 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theorem3impia 1182 Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
((𝜑𝜓) → (𝜒𝜃))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorem3impib 1183 Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
(𝜑 → ((𝜓𝜒) → 𝜃))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorem3exp 1184 Exportation inference. (Contributed by NM, 30-May-1994.)
((𝜑𝜓𝜒) → 𝜃)       (𝜑 → (𝜓 → (𝜒𝜃)))
 
Theorem3expa 1185 Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.)
((𝜑𝜓𝜒) → 𝜃)       (((𝜑𝜓) ∧ 𝜒) → 𝜃)
 
Theorem3expb 1186 Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.)
((𝜑𝜓𝜒) → 𝜃)       ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
 
Theorem3expia 1187 Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
((𝜑𝜓𝜒) → 𝜃)       ((𝜑𝜓) → (𝜒𝜃))
 
Theorem3expib 1188 Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
((𝜑𝜓𝜒) → 𝜃)       (𝜑 → ((𝜓𝜒) → 𝜃))
 
Theorem3com12 1189 Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((𝜑𝜓𝜒) → 𝜃)       ((𝜓𝜑𝜒) → 𝜃)
 
Theorem3com13 1190 Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.)
((𝜑𝜓𝜒) → 𝜃)       ((𝜒𝜓𝜑) → 𝜃)
 
Theorem3com23 1191 Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.)
((𝜑𝜓𝜒) → 𝜃)       ((𝜑𝜒𝜓) → 𝜃)
 
Theorem3coml 1192 Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.)
((𝜑𝜓𝜒) → 𝜃)       ((𝜓𝜒𝜑) → 𝜃)
 
Theorem3comr 1193 Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
((𝜑𝜓𝜒) → 𝜃)       ((𝜒𝜑𝜓) → 𝜃)
 
Theorem3adant3r1 1194 Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.)
((𝜑𝜓𝜒) → 𝜃)       ((𝜑 ∧ (𝜏𝜓𝜒)) → 𝜃)
 
Theorem3adant3r2 1195 Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.)
((𝜑𝜓𝜒) → 𝜃)       ((𝜑 ∧ (𝜓𝜏𝜒)) → 𝜃)
 
Theorem3adant3r3 1196 Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.)
((𝜑𝜓𝜒) → 𝜃)       ((𝜑 ∧ (𝜓𝜒𝜏)) → 𝜃)
 
Theoremad4ant123 1197 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓𝜒) → 𝜃)       ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜃)
 
Theoremad4ant124 1198 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓𝜒) → 𝜃)       ((((𝜑𝜓) ∧ 𝜏) ∧ 𝜒) → 𝜃)
 
Theoremad4ant134 1199 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓𝜒) → 𝜃)       ((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃)
 
Theoremad4ant234 1200 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
((𝜑𝜓𝜒) → 𝜃)       ((((𝜏𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13623
  Copyright terms: Public domain < Previous  Next >