ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp13 GIF version

Theorem simp13 1053
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
Assertion
Ref Expression
simp13 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)

Proof of Theorem simp13
StepHypRef Expression
1 simp3 1023 . 2 ((𝜑𝜓𝜒) → 𝜒)
213ad2ant1 1042 1 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  simpl13  1098  simpr13  1107  simp113  1152  simp213  1161  simp313  1170  funtpg  5371  dvdsgcd  12528  coprimeprodsq  12775  pythagtriplem4  12786  pythagtriplem13  12794  pythagtriplem14  12795  pythagtriplem16  12797  pythagtrip  12801
  Copyright terms: Public domain W3C validator