ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp13 GIF version

Theorem simp13 1024
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
Assertion
Ref Expression
simp13 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)

Proof of Theorem simp13
StepHypRef Expression
1 simp3 994 . 2 ((𝜑𝜓𝜒) → 𝜒)
213ad2ant1 1013 1 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  simpl13  1069  simpr13  1078  simp113  1123  simp213  1132  simp313  1141  funtpg  5249  dvdsgcd  11967  coprimeprodsq  12211  pythagtriplem4  12222  pythagtriplem13  12230  pythagtriplem14  12231  pythagtriplem16  12233  pythagtrip  12237
  Copyright terms: Public domain W3C validator