| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp13 | GIF version | ||
| Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp13 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1001 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | 3ad2ant1 1020 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl13 1076 simpr13 1085 simp113 1130 simp213 1139 simp313 1148 funtpg 5310 dvdsgcd 12204 coprimeprodsq 12451 pythagtriplem4 12462 pythagtriplem13 12470 pythagtriplem14 12471 pythagtriplem16 12473 pythagtrip 12477 |
| Copyright terms: Public domain | W3C validator |