ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp2l2 GIF version

Theorem simp2l2 1097
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2l2 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜓)

Proof of Theorem simp2l2
StepHypRef Expression
1 simpl2 1001 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
213ad2ant2 1019 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator