![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl2 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl2 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1000 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpll2 1039 simprl2 1045 simp1l2 1093 simp2l2 1099 simp3l2 1105 3anandirs 1359 rspc3ev 2881 ifnetruedc 3598 tfisi 4619 brcogw 4831 oawordi 6522 nnmord 6570 nnmword 6571 ac6sfi 6954 unsnfi 6975 unsnfidcel 6977 ordiso2 7094 prarloclemarch2 7479 enq0tr 7494 distrlem4prl 7644 distrlem4pru 7645 ltaprg 7679 aptiprlemu 7700 lelttr 8108 ltletr 8109 readdcan 8159 addcan 8199 addcan2 8200 ltadd2 8438 ltmul1a 8610 ltmul1 8611 divmulassap 8714 divmulasscomap 8715 lemul1a 8877 xrlelttr 9872 xrltletr 9873 xaddass 9935 xleadd1a 9939 xltadd1 9942 xlesubadd 9949 ixxdisj 9969 icoshftf1o 10057 icodisj 10058 lincmb01cmp 10069 iccf1o 10070 fztri3or 10105 ioom 10329 modqmuladdim 10438 modqmuladdnn0 10439 q2submod 10456 modqaddmulmod 10462 seqp1g 10537 exp3val 10612 ltexp2a 10662 exple1 10666 expnbnd 10734 expnlbnd2 10736 nn0ltexp2 10780 nn0leexp2 10781 mulsubdivbinom2ap 10782 expcan 10787 fiprsshashgt1 10888 maxleastb 11358 maxltsup 11362 xrltmaxsup 11400 xrmaxltsup 11401 xrmaxaddlem 11403 xrmaxadd 11404 addcn2 11453 mulcn2 11455 geoisum1c 11663 dvdsval2 11933 dvdsmodexp 11938 dvdsadd2b 11983 dvdsaddre2b 11984 dvdsmod 12004 oexpneg 12018 divalglemex 12063 divalg 12065 gcdass 12152 rplpwr 12164 rppwr 12165 nnminle 12172 lcmass 12223 coprmdvds2 12231 rpmulgcd2 12233 rpdvds 12237 cncongr2 12242 rpexp 12291 znege1 12316 prmdiveq 12374 hashgcdlem 12376 odzdvds 12383 coprimeprodsq2 12396 pythagtriplem3 12405 pythagtriplem4 12406 pcdvdsb 12458 pcbc 12489 ctinf 12587 nninfdc 12610 isnsgrp 12989 issubmnd 13023 nmzsubg 13280 ghmnsgima 13338 srg1zr 13483 ring1eq0 13544 mulgass2 13554 rhmdvdsr 13671 rmodislmod 13847 topssnei 14330 cnptopco 14390 cnconst2 14401 cnptoprest 14407 cnpdis 14410 upxp 14440 bldisj 14569 blgt0 14570 bl2in 14571 blss2ps 14574 blss2 14575 xblm 14585 blssps 14595 blss 14596 xmetresbl 14608 bdbl 14671 bdmopn 14672 metcnp3 14679 metcnp 14680 metcnp2 14681 dvfvalap 14835 dvcnp2cntop 14848 dvcn 14849 ply1term 14889 logdivlti 15016 ltexp2 15074 lgsfvalg 15121 lgsneg 15140 lgsdilem 15143 lgsdirprm 15150 lgsdir 15151 lgsdi 15153 lgsne0 15154 1dom1el 15483 |
Copyright terms: Public domain | W3C validator |