| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl2 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl2 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpll2 1039 simprl2 1045 simp1l2 1093 simp2l2 1099 simp3l2 1105 3anandirs 1359 rspc3ev 2885 ifnetruedc 3603 tfisi 4624 brcogw 4836 oawordi 6536 nnmord 6584 nnmword 6585 ac6sfi 6968 unsnfi 6989 unsnfidcel 6991 ordiso2 7110 prarloclemarch2 7505 enq0tr 7520 distrlem4prl 7670 distrlem4pru 7671 ltaprg 7705 aptiprlemu 7726 lelttr 8134 ltletr 8135 readdcan 8185 addcan 8225 addcan2 8226 ltadd2 8465 ltmul1a 8637 ltmul1 8638 divmulassap 8741 divmulasscomap 8742 lemul1a 8904 xrlelttr 9900 xrltletr 9901 xaddass 9963 xleadd1a 9967 xltadd1 9970 xlesubadd 9977 ixxdisj 9997 icoshftf1o 10085 icodisj 10086 lincmb01cmp 10097 iccf1o 10098 fztri3or 10133 ioom 10369 modqmuladdim 10478 modqmuladdnn0 10479 q2submod 10496 modqaddmulmod 10502 seqp1g 10577 exp3val 10652 ltexp2a 10702 exple1 10706 expnbnd 10774 expnlbnd2 10776 nn0ltexp2 10820 nn0leexp2 10821 mulsubdivbinom2ap 10822 expcan 10827 fiprsshashgt1 10928 maxleastb 11398 maxltsup 11402 xrltmaxsup 11441 xrmaxltsup 11442 xrmaxaddlem 11444 xrmaxadd 11445 addcn2 11494 mulcn2 11496 geoisum1c 11704 dvdsval2 11974 dvdsmodexp 11979 dvdsadd2b 12024 dvdsaddre2b 12025 dvdsmod 12046 oexpneg 12061 divalglemex 12106 divalg 12108 gcdass 12209 rplpwr 12221 rppwr 12222 nnminle 12229 lcmass 12280 coprmdvds2 12288 rpmulgcd2 12290 rpdvds 12294 cncongr2 12299 rpexp 12348 znege1 12373 prmdiveq 12431 hashgcdlem 12433 odzdvds 12441 coprimeprodsq2 12454 pythagtriplem3 12463 pythagtriplem4 12464 pcdvdsb 12516 pcbc 12547 ctinf 12674 nninfdc 12697 isnsgrp 13110 issubmnd 13146 nmzsubg 13418 ghmnsgima 13476 srg1zr 13621 ring1eq0 13682 mulgass2 13692 rhmdvdsr 13809 rmodislmod 13985 topssnei 14484 cnptopco 14544 cnconst2 14555 cnptoprest 14561 cnpdis 14564 upxp 14594 bldisj 14723 blgt0 14724 bl2in 14725 blss2ps 14728 blss2 14729 xblm 14739 blssps 14749 blss 14750 xmetresbl 14762 bdbl 14825 bdmopn 14826 metcnp3 14833 metcnp 14834 metcnp2 14835 dvfvalap 15003 dvcnp2cntop 15021 dvcn 15022 ply1term 15065 dvply1 15087 logdivlti 15203 ltexp2 15263 lgsfvalg 15332 lgsneg 15351 lgsdilem 15354 lgsdirprm 15361 lgsdir 15362 lgsdi 15364 lgsne0 15365 1dom1el 15723 |
| Copyright terms: Public domain | W3C validator |