| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl2 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl2 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpll2 1039 simprl2 1045 simp1l2 1093 simp2l2 1099 simp3l2 1105 3anandirs 1359 rspc3ev 2885 ifnetruedc 3603 tfisi 4624 brcogw 4836 oawordi 6536 nnmord 6584 nnmword 6585 ac6sfi 6968 unsnfi 6989 unsnfidcel 6991 ordiso2 7110 prarloclemarch2 7503 enq0tr 7518 distrlem4prl 7668 distrlem4pru 7669 ltaprg 7703 aptiprlemu 7724 lelttr 8132 ltletr 8133 readdcan 8183 addcan 8223 addcan2 8224 ltadd2 8463 ltmul1a 8635 ltmul1 8636 divmulassap 8739 divmulasscomap 8740 lemul1a 8902 xrlelttr 9898 xrltletr 9899 xaddass 9961 xleadd1a 9965 xltadd1 9968 xlesubadd 9975 ixxdisj 9995 icoshftf1o 10083 icodisj 10084 lincmb01cmp 10095 iccf1o 10096 fztri3or 10131 ioom 10367 modqmuladdim 10476 modqmuladdnn0 10477 q2submod 10494 modqaddmulmod 10500 seqp1g 10575 exp3val 10650 ltexp2a 10700 exple1 10704 expnbnd 10772 expnlbnd2 10774 nn0ltexp2 10818 nn0leexp2 10819 mulsubdivbinom2ap 10820 expcan 10825 fiprsshashgt1 10926 maxleastb 11396 maxltsup 11400 xrltmaxsup 11439 xrmaxltsup 11440 xrmaxaddlem 11442 xrmaxadd 11443 addcn2 11492 mulcn2 11494 geoisum1c 11702 dvdsval2 11972 dvdsmodexp 11977 dvdsadd2b 12022 dvdsaddre2b 12023 dvdsmod 12044 oexpneg 12059 divalglemex 12104 divalg 12106 gcdass 12207 rplpwr 12219 rppwr 12220 nnminle 12227 lcmass 12278 coprmdvds2 12286 rpmulgcd2 12288 rpdvds 12292 cncongr2 12297 rpexp 12346 znege1 12371 prmdiveq 12429 hashgcdlem 12431 odzdvds 12439 coprimeprodsq2 12452 pythagtriplem3 12461 pythagtriplem4 12462 pcdvdsb 12514 pcbc 12545 ctinf 12672 nninfdc 12695 isnsgrp 13108 issubmnd 13144 nmzsubg 13416 ghmnsgima 13474 srg1zr 13619 ring1eq0 13680 mulgass2 13690 rhmdvdsr 13807 rmodislmod 13983 topssnei 14482 cnptopco 14542 cnconst2 14553 cnptoprest 14559 cnpdis 14562 upxp 14592 bldisj 14721 blgt0 14722 bl2in 14723 blss2ps 14726 blss2 14727 xblm 14737 blssps 14747 blss 14748 xmetresbl 14760 bdbl 14823 bdmopn 14824 metcnp3 14831 metcnp 14832 metcnp2 14833 dvfvalap 15001 dvcnp2cntop 15019 dvcn 15020 ply1term 15063 dvply1 15085 logdivlti 15201 ltexp2 15261 lgsfvalg 15330 lgsneg 15349 lgsdilem 15352 lgsdirprm 15359 lgsdir 15360 lgsdi 15362 lgsne0 15363 1dom1el 15721 |
| Copyright terms: Public domain | W3C validator |