| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl2 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl2 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1001 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpll2 1040 simprl2 1046 simp1l2 1094 simp2l2 1100 simp3l2 1106 3anandirs 1361 rspc3ev 2895 ifnetruedc 3614 tfisi 4639 brcogw 4851 oawordi 6562 nnmord 6610 nnmword 6611 ac6sfi 7002 unsnfi 7023 unsnfidcel 7025 ordiso2 7144 prarloclemarch2 7539 enq0tr 7554 distrlem4prl 7704 distrlem4pru 7705 ltaprg 7739 aptiprlemu 7760 lelttr 8168 ltletr 8169 readdcan 8219 addcan 8259 addcan2 8260 ltadd2 8499 ltmul1a 8671 ltmul1 8672 divmulassap 8775 divmulasscomap 8776 lemul1a 8938 xrlelttr 9935 xrltletr 9936 xaddass 9998 xleadd1a 10002 xltadd1 10005 xlesubadd 10012 ixxdisj 10032 icoshftf1o 10120 icodisj 10121 lincmb01cmp 10132 iccf1o 10133 fztri3or 10168 ioom 10410 modqmuladdim 10519 modqmuladdnn0 10520 q2submod 10537 modqaddmulmod 10543 seqp1g 10618 exp3val 10693 ltexp2a 10743 exple1 10747 expnbnd 10815 expnlbnd2 10817 nn0ltexp2 10861 nn0leexp2 10862 mulsubdivbinom2ap 10863 expcan 10868 fiprsshashgt1 10969 fun2dmnop0 10999 ccatass 11072 fzowrddc 11108 swrdclg 11111 maxleastb 11569 maxltsup 11573 xrltmaxsup 11612 xrmaxltsup 11613 xrmaxaddlem 11615 xrmaxadd 11616 addcn2 11665 mulcn2 11667 geoisum1c 11875 dvdsval2 12145 dvdsmodexp 12150 dvdsadd2b 12195 dvdsaddre2b 12196 dvdsmod 12217 oexpneg 12232 divalglemex 12277 divalg 12279 gcdass 12380 rplpwr 12392 rppwr 12393 nnminle 12400 lcmass 12451 coprmdvds2 12459 rpmulgcd2 12461 rpdvds 12465 cncongr2 12470 rpexp 12519 znege1 12544 prmdiveq 12602 hashgcdlem 12604 odzdvds 12612 coprimeprodsq2 12625 pythagtriplem3 12634 pythagtriplem4 12635 pcdvdsb 12687 pcbc 12718 ctinf 12845 nninfdc 12868 isnsgrp 13282 issubmnd 13318 nmzsubg 13590 ghmnsgima 13648 srg1zr 13793 ring1eq0 13854 mulgass2 13864 rhmdvdsr 13981 rmodislmod 14157 topssnei 14678 cnptopco 14738 cnconst2 14749 cnptoprest 14755 cnpdis 14758 upxp 14788 bldisj 14917 blgt0 14918 bl2in 14919 blss2ps 14922 blss2 14923 xblm 14933 blssps 14943 blss 14944 xmetresbl 14956 bdbl 15019 bdmopn 15020 metcnp3 15027 metcnp 15028 metcnp2 15029 dvfvalap 15197 dvcnp2cntop 15215 dvcn 15216 ply1term 15259 dvply1 15281 logdivlti 15397 ltexp2 15457 lgsfvalg 15526 lgsneg 15545 lgsdilem 15548 lgsdirprm 15555 lgsdir 15556 lgsdi 15558 lgsne0 15559 1dom1el 16001 |
| Copyright terms: Public domain | W3C validator |