Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpl2 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl2 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 988 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | adantr 274 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simpll2 1027 simprl2 1033 simp1l2 1081 simp2l2 1087 simp3l2 1093 3anandirs 1338 rspc3ev 2846 tfisi 4563 brcogw 4772 oawordi 6433 nnmord 6481 nnmword 6482 ac6sfi 6860 unsnfi 6880 unsnfidcel 6882 ordiso2 6996 prarloclemarch2 7356 enq0tr 7371 distrlem4prl 7521 distrlem4pru 7522 ltaprg 7556 aptiprlemu 7577 lelttr 7983 ltletr 7984 readdcan 8034 addcan 8074 addcan2 8075 ltadd2 8313 ltmul1a 8485 ltmul1 8486 divmulassap 8587 divmulasscomap 8588 lemul1a 8749 xrlelttr 9738 xrltletr 9739 xaddass 9801 xleadd1a 9805 xltadd1 9808 xlesubadd 9815 ixxdisj 9835 icoshftf1o 9923 icodisj 9924 lincmb01cmp 9935 iccf1o 9936 fztri3or 9970 ioom 10192 modqmuladdim 10298 modqmuladdnn0 10299 q2submod 10316 modqaddmulmod 10322 exp3val 10453 ltexp2a 10503 exple1 10507 expnbnd 10574 expnlbnd2 10576 nn0ltexp2 10619 nn0leexp2 10620 expcan 10625 fiprsshashgt1 10726 maxleastb 11152 maxltsup 11156 xrltmaxsup 11194 xrmaxltsup 11195 xrmaxaddlem 11197 xrmaxadd 11198 addcn2 11247 mulcn2 11249 geoisum1c 11457 dvdsval2 11726 dvdsmodexp 11731 dvdsadd2b 11776 dvdsmod 11796 oexpneg 11810 divalglemex 11855 divalg 11857 gcdass 11944 rplpwr 11956 rppwr 11957 nnminle 11964 lcmass 12013 coprmdvds2 12021 rpmulgcd2 12023 rpdvds 12027 cncongr2 12032 rpexp 12081 znege1 12106 prmdiveq 12164 hashgcdlem 12166 odzdvds 12173 coprimeprodsq2 12186 pythagtriplem3 12195 pythagtriplem4 12196 pcdvdsb 12247 pcbc 12277 ctinf 12359 nninfdc 12382 topssnei 12762 cnptopco 12822 cnconst2 12833 cnptoprest 12839 cnpdis 12842 upxp 12872 bldisj 13001 blgt0 13002 bl2in 13003 blss2ps 13006 blss2 13007 xblm 13017 blssps 13027 blss 13028 xmetresbl 13040 bdbl 13103 bdmopn 13104 metcnp3 13111 metcnp 13112 metcnp2 13113 dvfvalap 13250 dvcnp2cntop 13263 dvcn 13264 logdivlti 13402 ltexp2 13460 lgsfvalg 13506 lgsneg 13525 lgsdilem 13528 lgsdirprm 13535 lgsdir 13536 lgsdi 13538 lgsne0 13539 |
Copyright terms: Public domain | W3C validator |