| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl2 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl2 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpll2 1039 simprl2 1045 simp1l2 1093 simp2l2 1099 simp3l2 1105 3anandirs 1359 rspc3ev 2885 ifnetruedc 3602 tfisi 4623 brcogw 4835 oawordi 6527 nnmord 6575 nnmword 6576 ac6sfi 6959 unsnfi 6980 unsnfidcel 6982 ordiso2 7101 prarloclemarch2 7486 enq0tr 7501 distrlem4prl 7651 distrlem4pru 7652 ltaprg 7686 aptiprlemu 7707 lelttr 8115 ltletr 8116 readdcan 8166 addcan 8206 addcan2 8207 ltadd2 8446 ltmul1a 8618 ltmul1 8619 divmulassap 8722 divmulasscomap 8723 lemul1a 8885 xrlelttr 9881 xrltletr 9882 xaddass 9944 xleadd1a 9948 xltadd1 9951 xlesubadd 9958 ixxdisj 9978 icoshftf1o 10066 icodisj 10067 lincmb01cmp 10078 iccf1o 10079 fztri3or 10114 ioom 10350 modqmuladdim 10459 modqmuladdnn0 10460 q2submod 10477 modqaddmulmod 10483 seqp1g 10558 exp3val 10633 ltexp2a 10683 exple1 10687 expnbnd 10755 expnlbnd2 10757 nn0ltexp2 10801 nn0leexp2 10802 mulsubdivbinom2ap 10803 expcan 10808 fiprsshashgt1 10909 maxleastb 11379 maxltsup 11383 xrltmaxsup 11422 xrmaxltsup 11423 xrmaxaddlem 11425 xrmaxadd 11426 addcn2 11475 mulcn2 11477 geoisum1c 11685 dvdsval2 11955 dvdsmodexp 11960 dvdsadd2b 12005 dvdsaddre2b 12006 dvdsmod 12027 oexpneg 12042 divalglemex 12087 divalg 12089 gcdass 12182 rplpwr 12194 rppwr 12195 nnminle 12202 lcmass 12253 coprmdvds2 12261 rpmulgcd2 12263 rpdvds 12267 cncongr2 12272 rpexp 12321 znege1 12346 prmdiveq 12404 hashgcdlem 12406 odzdvds 12414 coprimeprodsq2 12427 pythagtriplem3 12436 pythagtriplem4 12437 pcdvdsb 12489 pcbc 12520 ctinf 12647 nninfdc 12670 isnsgrp 13049 issubmnd 13083 nmzsubg 13340 ghmnsgima 13398 srg1zr 13543 ring1eq0 13604 mulgass2 13614 rhmdvdsr 13731 rmodislmod 13907 topssnei 14398 cnptopco 14458 cnconst2 14469 cnptoprest 14475 cnpdis 14478 upxp 14508 bldisj 14637 blgt0 14638 bl2in 14639 blss2ps 14642 blss2 14643 xblm 14653 blssps 14663 blss 14664 xmetresbl 14676 bdbl 14739 bdmopn 14740 metcnp3 14747 metcnp 14748 metcnp2 14749 dvfvalap 14917 dvcnp2cntop 14935 dvcn 14936 ply1term 14979 dvply1 15001 logdivlti 15117 ltexp2 15177 lgsfvalg 15246 lgsneg 15265 lgsdilem 15268 lgsdirprm 15275 lgsdir 15276 lgsdi 15278 lgsne0 15279 1dom1el 15637 |
| Copyright terms: Public domain | W3C validator |