Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpl2 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl2 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 993 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | adantr 274 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: simpll2 1032 simprl2 1038 simp1l2 1086 simp2l2 1092 simp3l2 1098 3anandirs 1343 rspc3ev 2851 tfisi 4569 brcogw 4778 oawordi 6446 nnmord 6494 nnmword 6495 ac6sfi 6874 unsnfi 6894 unsnfidcel 6896 ordiso2 7010 prarloclemarch2 7374 enq0tr 7389 distrlem4prl 7539 distrlem4pru 7540 ltaprg 7574 aptiprlemu 7595 lelttr 8001 ltletr 8002 readdcan 8052 addcan 8092 addcan2 8093 ltadd2 8331 ltmul1a 8503 ltmul1 8504 divmulassap 8605 divmulasscomap 8606 lemul1a 8767 xrlelttr 9756 xrltletr 9757 xaddass 9819 xleadd1a 9823 xltadd1 9826 xlesubadd 9833 ixxdisj 9853 icoshftf1o 9941 icodisj 9942 lincmb01cmp 9953 iccf1o 9954 fztri3or 9988 ioom 10210 modqmuladdim 10316 modqmuladdnn0 10317 q2submod 10334 modqaddmulmod 10340 exp3val 10471 ltexp2a 10521 exple1 10525 expnbnd 10592 expnlbnd2 10594 nn0ltexp2 10637 nn0leexp2 10638 expcan 10643 fiprsshashgt1 10745 maxleastb 11171 maxltsup 11175 xrltmaxsup 11213 xrmaxltsup 11214 xrmaxaddlem 11216 xrmaxadd 11217 addcn2 11266 mulcn2 11268 geoisum1c 11476 dvdsval2 11745 dvdsmodexp 11750 dvdsadd2b 11795 dvdsmod 11815 oexpneg 11829 divalglemex 11874 divalg 11876 gcdass 11963 rplpwr 11975 rppwr 11976 nnminle 11983 lcmass 12032 coprmdvds2 12040 rpmulgcd2 12042 rpdvds 12046 cncongr2 12051 rpexp 12100 znege1 12125 prmdiveq 12183 hashgcdlem 12185 odzdvds 12192 coprimeprodsq2 12205 pythagtriplem3 12214 pythagtriplem4 12215 pcdvdsb 12266 pcbc 12296 ctinf 12378 nninfdc 12401 isnsgrp 12640 topssnei 12921 cnptopco 12981 cnconst2 12992 cnptoprest 12998 cnpdis 13001 upxp 13031 bldisj 13160 blgt0 13161 bl2in 13162 blss2ps 13165 blss2 13166 xblm 13176 blssps 13186 blss 13187 xmetresbl 13199 bdbl 13262 bdmopn 13263 metcnp3 13270 metcnp 13271 metcnp2 13272 dvfvalap 13409 dvcnp2cntop 13422 dvcn 13423 logdivlti 13561 ltexp2 13619 lgsfvalg 13665 lgsneg 13684 lgsdilem 13687 lgsdirprm 13694 lgsdir 13695 lgsdi 13697 lgsne0 13698 |
Copyright terms: Public domain | W3C validator |