![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl2 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl2 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1000 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpll2 1039 simprl2 1045 simp1l2 1093 simp2l2 1099 simp3l2 1105 3anandirs 1359 rspc3ev 2882 ifnetruedc 3599 tfisi 4620 brcogw 4832 oawordi 6524 nnmord 6572 nnmword 6573 ac6sfi 6956 unsnfi 6977 unsnfidcel 6979 ordiso2 7096 prarloclemarch2 7481 enq0tr 7496 distrlem4prl 7646 distrlem4pru 7647 ltaprg 7681 aptiprlemu 7702 lelttr 8110 ltletr 8111 readdcan 8161 addcan 8201 addcan2 8202 ltadd2 8440 ltmul1a 8612 ltmul1 8613 divmulassap 8716 divmulasscomap 8717 lemul1a 8879 xrlelttr 9875 xrltletr 9876 xaddass 9938 xleadd1a 9942 xltadd1 9945 xlesubadd 9952 ixxdisj 9972 icoshftf1o 10060 icodisj 10061 lincmb01cmp 10072 iccf1o 10073 fztri3or 10108 ioom 10332 modqmuladdim 10441 modqmuladdnn0 10442 q2submod 10459 modqaddmulmod 10465 seqp1g 10540 exp3val 10615 ltexp2a 10665 exple1 10669 expnbnd 10737 expnlbnd2 10739 nn0ltexp2 10783 nn0leexp2 10784 mulsubdivbinom2ap 10785 expcan 10790 fiprsshashgt1 10891 maxleastb 11361 maxltsup 11365 xrltmaxsup 11403 xrmaxltsup 11404 xrmaxaddlem 11406 xrmaxadd 11407 addcn2 11456 mulcn2 11458 geoisum1c 11666 dvdsval2 11936 dvdsmodexp 11941 dvdsadd2b 11986 dvdsaddre2b 11987 dvdsmod 12007 oexpneg 12021 divalglemex 12066 divalg 12068 gcdass 12155 rplpwr 12167 rppwr 12168 nnminle 12175 lcmass 12226 coprmdvds2 12234 rpmulgcd2 12236 rpdvds 12240 cncongr2 12245 rpexp 12294 znege1 12319 prmdiveq 12377 hashgcdlem 12379 odzdvds 12386 coprimeprodsq2 12399 pythagtriplem3 12408 pythagtriplem4 12409 pcdvdsb 12461 pcbc 12492 ctinf 12590 nninfdc 12613 isnsgrp 12992 issubmnd 13026 nmzsubg 13283 ghmnsgima 13341 srg1zr 13486 ring1eq0 13547 mulgass2 13557 rhmdvdsr 13674 rmodislmod 13850 topssnei 14341 cnptopco 14401 cnconst2 14412 cnptoprest 14418 cnpdis 14421 upxp 14451 bldisj 14580 blgt0 14581 bl2in 14582 blss2ps 14585 blss2 14586 xblm 14596 blssps 14606 blss 14607 xmetresbl 14619 bdbl 14682 bdmopn 14683 metcnp3 14690 metcnp 14691 metcnp2 14692 dvfvalap 14860 dvcnp2cntop 14878 dvcn 14879 ply1term 14922 dvply1 14943 logdivlti 15057 ltexp2 15115 lgsfvalg 15162 lgsneg 15181 lgsdilem 15184 lgsdirprm 15191 lgsdir 15192 lgsdi 15194 lgsne0 15195 1dom1el 15553 |
Copyright terms: Public domain | W3C validator |