ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp2r2 GIF version

Theorem simp2r2 1089
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2r2 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜓)

Proof of Theorem simp2r2
StepHypRef Expression
1 simpr2 993 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant2 1008 1 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator