| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr2 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1001 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simplr2 1043 simprr2 1049 simp1r2 1097 simp2r2 1103 simp3r2 1109 3anandis 1360 isopolem 5898 tfrlemibacc 6419 tfrlemibfn 6421 tfr1onlembacc 6435 tfr1onlembfn 6437 tfrcllembacc 6448 tfrcllembfn 6450 prltlu 7607 prdisj 7612 prmuloc2 7687 ltntri 8207 eluzuzle 9663 xlesubadd 10012 elioc2 10065 elico2 10066 elicc2 10067 fseq1p1m1 10223 fz0fzelfz0 10256 seq3f1olemp 10667 bcval5 10915 hashdifpr 10972 swrdsbslen 11127 ccatswrd 11131 swrdswrdlem 11163 summodclem2 11737 isumss2 11748 tanaddap 12094 dvds2ln 12179 divalglemeunn 12276 divalglemex 12277 divalglemeuneg 12278 isstructr 12891 f1ovscpbl 13188 prdssgrpd 13291 prdsmndd 13324 mndissubm 13351 grpsubrcan 13457 grpsubadd 13464 grpaddsubass 13466 grpsubsub4 13469 grppnpcan2 13470 grpnpncan 13471 mulgnndir 13531 mulgnn0dir 13532 mulgdir 13534 mulgnnass 13537 mulgnn0ass 13538 mulgass 13539 mulgsubdir 13542 issubg2m 13569 eqgval 13603 qusgrp 13612 cmn32 13684 cmn12 13686 abladdsub 13695 ablsubsub23 13705 rngass 13745 srgdilem 13775 srgass 13777 ringdilem 13818 ringass 13822 opprrng 13883 opprring 13885 mulgass3 13891 unitgrp 13922 dvrass 13945 dvrdir 13949 subrgunit 14045 issubrg2 14047 aprap 14092 lsssn0 14176 islss3 14185 sralmod 14256 restopnb 14697 icnpimaex 14727 cnptopresti 14754 psmettri 14846 isxmet2d 14864 xmettri 14888 metrtri 14893 xmetres2 14895 bldisj 14917 blss2ps 14922 blss2 14923 xmstri2 14986 mstri2 14987 xmstri 14988 mstri 14989 xmstri3 14990 mstri3 14991 msrtri 14992 comet 15015 bdbl 15019 xmetxp 15023 dvconst 15210 dvconstre 15212 dvconstss 15214 sgmmul 15512 gausslemma2dlem1a 15579 |
| Copyright terms: Public domain | W3C validator |