Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpr2 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 983 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
2 | 1 | adantl 275 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: simplr2 1025 simprr2 1031 simp1r2 1079 simp2r2 1085 simp3r2 1091 3anandis 1326 isopolem 5763 tfrlemibacc 6263 tfrlemibfn 6265 tfr1onlembacc 6279 tfr1onlembfn 6281 tfrcllembacc 6292 tfrcllembfn 6294 prltlu 7386 prdisj 7391 prmuloc2 7466 ltntri 7982 eluzuzle 9426 xlesubadd 9765 elioc2 9818 elico2 9819 elicc2 9820 fseq1p1m1 9974 fz0fzelfz0 10004 seq3f1olemp 10379 bcval5 10614 hashdifpr 10671 summodclem2 11256 isumss2 11267 tanaddap 11613 dvds2ln 11693 divalglemeunn 11785 divalglemex 11786 divalglemeuneg 11787 isstructr 12152 restopnb 12528 icnpimaex 12558 cnptopresti 12585 psmettri 12677 isxmet2d 12695 xmettri 12719 metrtri 12724 xmetres2 12726 bldisj 12748 blss2ps 12753 blss2 12754 xmstri2 12817 mstri2 12818 xmstri 12819 mstri 12820 xmstri3 12821 mstri3 12822 msrtri 12823 comet 12846 bdbl 12850 xmetxp 12854 dvconst 13008 |
Copyright terms: Public domain | W3C validator |