| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr2 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1022 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simplr2 1064 simprr2 1070 simp1r2 1118 simp2r2 1124 simp3r2 1130 3anandis 1381 isopolem 5952 tfrlemibacc 6478 tfrlemibfn 6480 tfr1onlembacc 6494 tfr1onlembfn 6496 tfrcllembacc 6507 tfrcllembfn 6509 prltlu 7682 prdisj 7687 prmuloc2 7762 ltntri 8282 eluzuzle 9738 xlesubadd 10087 elioc2 10140 elico2 10141 elicc2 10142 fseq1p1m1 10298 fz0fzelfz0 10331 seq3f1olemp 10745 bcval5 10993 hashdifpr 11050 swrdsbslen 11206 ccatswrd 11210 swrdswrdlem 11244 summodclem2 11901 isumss2 11912 tanaddap 12258 dvds2ln 12343 divalglemeunn 12440 divalglemex 12441 divalglemeuneg 12442 isstructr 13055 f1ovscpbl 13353 prdssgrpd 13456 prdsmndd 13489 mndissubm 13516 grpsubrcan 13622 grpsubadd 13629 grpaddsubass 13631 grpsubsub4 13634 grppnpcan2 13635 grpnpncan 13636 mulgnndir 13696 mulgnn0dir 13697 mulgdir 13699 mulgnnass 13702 mulgnn0ass 13703 mulgass 13704 mulgsubdir 13707 issubg2m 13734 eqgval 13768 qusgrp 13777 cmn32 13849 cmn12 13851 abladdsub 13860 ablsubsub23 13870 rngass 13910 srgdilem 13940 srgass 13942 ringdilem 13983 ringass 13987 opprrng 14048 opprring 14050 mulgass3 14056 unitgrp 14088 dvrass 14111 dvrdir 14115 subrgunit 14211 issubrg2 14213 aprap 14258 lsssn0 14342 islss3 14351 sralmod 14422 restopnb 14863 icnpimaex 14893 cnptopresti 14920 psmettri 15012 isxmet2d 15030 xmettri 15054 metrtri 15059 xmetres2 15061 bldisj 15083 blss2ps 15088 blss2 15089 xmstri2 15152 mstri2 15153 xmstri 15154 mstri 15155 xmstri3 15156 mstri3 15157 msrtri 15158 comet 15181 bdbl 15185 xmetxp 15189 dvconst 15376 dvconstre 15378 dvconstss 15380 sgmmul 15678 gausslemma2dlem1a 15745 pw1ndom3 16383 |
| Copyright terms: Public domain | W3C validator |