| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr2 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simplr2 1042 simprr2 1048 simp1r2 1096 simp2r2 1102 simp3r2 1108 3anandis 1358 isopolem 5872 tfrlemibacc 6393 tfrlemibfn 6395 tfr1onlembacc 6409 tfr1onlembfn 6411 tfrcllembacc 6422 tfrcllembfn 6424 prltlu 7573 prdisj 7578 prmuloc2 7653 ltntri 8173 eluzuzle 9628 xlesubadd 9977 elioc2 10030 elico2 10031 elicc2 10032 fseq1p1m1 10188 fz0fzelfz0 10221 seq3f1olemp 10626 bcval5 10874 hashdifpr 10931 summodclem2 11566 isumss2 11577 tanaddap 11923 dvds2ln 12008 divalglemeunn 12105 divalglemex 12106 divalglemeuneg 12107 isstructr 12720 f1ovscpbl 13016 prdssgrpd 13119 prdsmndd 13152 mndissubm 13179 grpsubrcan 13285 grpsubadd 13292 grpaddsubass 13294 grpsubsub4 13297 grppnpcan2 13298 grpnpncan 13299 mulgnndir 13359 mulgnn0dir 13360 mulgdir 13362 mulgnnass 13365 mulgnn0ass 13366 mulgass 13367 mulgsubdir 13370 issubg2m 13397 eqgval 13431 qusgrp 13440 cmn32 13512 cmn12 13514 abladdsub 13523 ablsubsub23 13533 rngass 13573 srgdilem 13603 srgass 13605 ringdilem 13646 ringass 13650 opprrng 13711 opprring 13713 mulgass3 13719 unitgrp 13750 dvrass 13773 dvrdir 13777 subrgunit 13873 issubrg2 13875 aprap 13920 lsssn0 14004 islss3 14013 sralmod 14084 restopnb 14503 icnpimaex 14533 cnptopresti 14560 psmettri 14652 isxmet2d 14670 xmettri 14694 metrtri 14699 xmetres2 14701 bldisj 14723 blss2ps 14728 blss2 14729 xmstri2 14792 mstri2 14793 xmstri 14794 mstri 14795 xmstri3 14796 mstri3 14797 msrtri 14798 comet 14821 bdbl 14825 xmetxp 14829 dvconst 15016 dvconstre 15018 dvconstss 15020 sgmmul 15318 gausslemma2dlem1a 15385 |
| Copyright terms: Public domain | W3C validator |