| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr2 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simplr2 1042 simprr2 1048 simp1r2 1096 simp2r2 1102 simp3r2 1108 3anandis 1358 isopolem 5872 tfrlemibacc 6393 tfrlemibfn 6395 tfr1onlembacc 6409 tfr1onlembfn 6411 tfrcllembacc 6422 tfrcllembfn 6424 prltlu 7571 prdisj 7576 prmuloc2 7651 ltntri 8171 eluzuzle 9626 xlesubadd 9975 elioc2 10028 elico2 10029 elicc2 10030 fseq1p1m1 10186 fz0fzelfz0 10219 seq3f1olemp 10624 bcval5 10872 hashdifpr 10929 summodclem2 11564 isumss2 11575 tanaddap 11921 dvds2ln 12006 divalglemeunn 12103 divalglemex 12104 divalglemeuneg 12105 isstructr 12718 f1ovscpbl 13014 prdssgrpd 13117 prdsmndd 13150 mndissubm 13177 grpsubrcan 13283 grpsubadd 13290 grpaddsubass 13292 grpsubsub4 13295 grppnpcan2 13296 grpnpncan 13297 mulgnndir 13357 mulgnn0dir 13358 mulgdir 13360 mulgnnass 13363 mulgnn0ass 13364 mulgass 13365 mulgsubdir 13368 issubg2m 13395 eqgval 13429 qusgrp 13438 cmn32 13510 cmn12 13512 abladdsub 13521 ablsubsub23 13531 rngass 13571 srgdilem 13601 srgass 13603 ringdilem 13644 ringass 13648 opprrng 13709 opprring 13711 mulgass3 13717 unitgrp 13748 dvrass 13771 dvrdir 13775 subrgunit 13871 issubrg2 13873 aprap 13918 lsssn0 14002 islss3 14011 sralmod 14082 restopnb 14501 icnpimaex 14531 cnptopresti 14558 psmettri 14650 isxmet2d 14668 xmettri 14692 metrtri 14697 xmetres2 14699 bldisj 14721 blss2ps 14726 blss2 14727 xmstri2 14790 mstri2 14791 xmstri 14792 mstri 14793 xmstri3 14794 mstri3 14795 msrtri 14796 comet 14819 bdbl 14823 xmetxp 14827 dvconst 15014 dvconstre 15016 dvconstss 15018 sgmmul 15316 gausslemma2dlem1a 15383 |
| Copyright terms: Public domain | W3C validator |