| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr2 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1003 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: simplr2 1045 simprr2 1051 simp1r2 1099 simp2r2 1105 simp3r2 1111 3anandis 1362 isopolem 5919 tfrlemibacc 6442 tfrlemibfn 6444 tfr1onlembacc 6458 tfr1onlembfn 6460 tfrcllembacc 6471 tfrcllembfn 6473 prltlu 7642 prdisj 7647 prmuloc2 7722 ltntri 8242 eluzuzle 9698 xlesubadd 10047 elioc2 10100 elico2 10101 elicc2 10102 fseq1p1m1 10258 fz0fzelfz0 10291 seq3f1olemp 10704 bcval5 10952 hashdifpr 11009 swrdsbslen 11164 ccatswrd 11168 swrdswrdlem 11202 summodclem2 11859 isumss2 11870 tanaddap 12216 dvds2ln 12301 divalglemeunn 12398 divalglemex 12399 divalglemeuneg 12400 isstructr 13013 f1ovscpbl 13311 prdssgrpd 13414 prdsmndd 13447 mndissubm 13474 grpsubrcan 13580 grpsubadd 13587 grpaddsubass 13589 grpsubsub4 13592 grppnpcan2 13593 grpnpncan 13594 mulgnndir 13654 mulgnn0dir 13655 mulgdir 13657 mulgnnass 13660 mulgnn0ass 13661 mulgass 13662 mulgsubdir 13665 issubg2m 13692 eqgval 13726 qusgrp 13735 cmn32 13807 cmn12 13809 abladdsub 13818 ablsubsub23 13828 rngass 13868 srgdilem 13898 srgass 13900 ringdilem 13941 ringass 13945 opprrng 14006 opprring 14008 mulgass3 14014 unitgrp 14045 dvrass 14068 dvrdir 14072 subrgunit 14168 issubrg2 14170 aprap 14215 lsssn0 14299 islss3 14308 sralmod 14379 restopnb 14820 icnpimaex 14850 cnptopresti 14877 psmettri 14969 isxmet2d 14987 xmettri 15011 metrtri 15016 xmetres2 15018 bldisj 15040 blss2ps 15045 blss2 15046 xmstri2 15109 mstri2 15110 xmstri 15111 mstri 15112 xmstri3 15113 mstri3 15114 msrtri 15115 comet 15138 bdbl 15142 xmetxp 15146 dvconst 15333 dvconstre 15335 dvconstss 15337 sgmmul 15635 gausslemma2dlem1a 15702 |
| Copyright terms: Public domain | W3C validator |