Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpr2 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 993 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
2 | 1 | adantl 275 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: simplr2 1035 simprr2 1041 simp1r2 1089 simp2r2 1095 simp3r2 1101 3anandis 1342 isopolem 5801 tfrlemibacc 6305 tfrlemibfn 6307 tfr1onlembacc 6321 tfr1onlembfn 6323 tfrcllembacc 6334 tfrcllembfn 6336 prltlu 7449 prdisj 7454 prmuloc2 7529 ltntri 8047 eluzuzle 9495 xlesubadd 9840 elioc2 9893 elico2 9894 elicc2 9895 fseq1p1m1 10050 fz0fzelfz0 10083 seq3f1olemp 10458 bcval5 10697 hashdifpr 10755 summodclem2 11345 isumss2 11356 tanaddap 11702 dvds2ln 11786 divalglemeunn 11880 divalglemex 11881 divalglemeuneg 11882 isstructr 12431 mndissubm 12697 restopnb 12975 icnpimaex 13005 cnptopresti 13032 psmettri 13124 isxmet2d 13142 xmettri 13166 metrtri 13171 xmetres2 13173 bldisj 13195 blss2ps 13200 blss2 13201 xmstri2 13264 mstri2 13265 xmstri 13266 mstri 13267 xmstri3 13268 mstri3 13269 msrtri 13270 comet 13293 bdbl 13297 xmetxp 13301 dvconst 13455 |
Copyright terms: Public domain | W3C validator |