| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp32 | GIF version | ||
| Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp32 | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜃) | |
| 2 | 1 | 3ad2ant3 1022 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl32 1081 simpr32 1090 simp132 1135 simp232 1144 simp332 1153 bitsfzo 12137 |
| Copyright terms: Public domain | W3C validator |