Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp32 | GIF version |
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
simp32 | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 993 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜃) | |
2 | 1 | 3ad2ant3 1015 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: simpl32 1074 simpr32 1083 simp132 1128 simp232 1137 simp332 1146 |
Copyright terms: Public domain | W3C validator |