![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp33 | GIF version |
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
simp33 | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 966 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜏) | |
2 | 1 | 3ad2ant3 987 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 945 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 947 |
This theorem is referenced by: simpl33 1047 simpr33 1056 simp133 1101 simp233 1110 simp333 1119 |
Copyright terms: Public domain | W3C validator |