Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minim Structured version   Visualization version   GIF version

Theorem adh-minim 43592
Description: A single axiom for minimal implicational calculus, due to Meredith. Other single axioms of the same length are known, but it is thought to be the minimal length. This is the axiom from Carew Arthur Meredith, A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. A two-line review by Alonzo Church of this article can be found in The Journal of Symbolic Logic, volume 19, issue 2, June 1954, page 144, https://doi.org/10.2307/2268914. Known as "HI-1" on Dolph Edward "Ted" Ulrich's web page. In the next 6 lemmas and 3 theorems, ax-1 6 and ax-2 7 are derived from this single axiom in 16 detachments (instances of ax-mp 5) in total. Polish prefix notation: CCCpqrCsCCqCrtCqt . (Contributed by ADH, 10-Nov-2023.)
Assertion
Ref Expression
adh-minim (((𝜑𝜓) → 𝜒) → (𝜃 → ((𝜓 → (𝜒𝜏)) → (𝜓𝜏))))

Proof of Theorem adh-minim
StepHypRef Expression
1 pm2.04 90 . . . . 5 ((𝜓 → (𝜒𝜏)) → (𝜒 → (𝜓𝜏)))
2 adh-jarrsc 43591 . . . . . . . 8 (((𝜑𝜓) → 𝜒) → ((𝜒 → (𝜓𝜏)) → (𝜓𝜒)))
3 pm2.04 90 . . . . . . . . . . 11 ((𝜒 → (𝜓𝜏)) → (𝜓 → (𝜒𝜏)))
4 ax-2 7 . . . . . . . . . . . 12 ((𝜓 → (𝜒𝜏)) → ((𝜓𝜒) → (𝜓𝜏)))
5 imim2 58 . . . . . . . . . . . 12 (((𝜓 → (𝜒𝜏)) → ((𝜓𝜒) → (𝜓𝜏))) → (((𝜒 → (𝜓𝜏)) → (𝜓 → (𝜒𝜏))) → ((𝜒 → (𝜓𝜏)) → ((𝜓𝜒) → (𝜓𝜏)))))
64, 5ax-mp 5 . . . . . . . . . . 11 (((𝜒 → (𝜓𝜏)) → (𝜓 → (𝜒𝜏))) → ((𝜒 → (𝜓𝜏)) → ((𝜓𝜒) → (𝜓𝜏))))
73, 6ax-mp 5 . . . . . . . . . 10 ((𝜒 → (𝜓𝜏)) → ((𝜓𝜒) → (𝜓𝜏)))
8 ax-2 7 . . . . . . . . . 10 (((𝜒 → (𝜓𝜏)) → ((𝜓𝜒) → (𝜓𝜏))) → (((𝜒 → (𝜓𝜏)) → (𝜓𝜒)) → ((𝜒 → (𝜓𝜏)) → (𝜓𝜏))))
97, 8ax-mp 5 . . . . . . . . 9 (((𝜒 → (𝜓𝜏)) → (𝜓𝜒)) → ((𝜒 → (𝜓𝜏)) → (𝜓𝜏)))
10 imim2 58 . . . . . . . . 9 ((((𝜒 → (𝜓𝜏)) → (𝜓𝜒)) → ((𝜒 → (𝜓𝜏)) → (𝜓𝜏))) → ((((𝜑𝜓) → 𝜒) → ((𝜒 → (𝜓𝜏)) → (𝜓𝜒))) → (((𝜑𝜓) → 𝜒) → ((𝜒 → (𝜓𝜏)) → (𝜓𝜏)))))
119, 10ax-mp 5 . . . . . . . 8 ((((𝜑𝜓) → 𝜒) → ((𝜒 → (𝜓𝜏)) → (𝜓𝜒))) → (((𝜑𝜓) → 𝜒) → ((𝜒 → (𝜓𝜏)) → (𝜓𝜏))))
122, 11ax-mp 5 . . . . . . 7 (((𝜑𝜓) → 𝜒) → ((𝜒 → (𝜓𝜏)) → (𝜓𝜏)))
13 pm2.04 90 . . . . . . 7 ((((𝜑𝜓) → 𝜒) → ((𝜒 → (𝜓𝜏)) → (𝜓𝜏))) → ((𝜒 → (𝜓𝜏)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜏))))
1412, 13ax-mp 5 . . . . . 6 ((𝜒 → (𝜓𝜏)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜏)))
15 imim2 58 . . . . . 6 (((𝜒 → (𝜓𝜏)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜏))) → (((𝜓 → (𝜒𝜏)) → (𝜒 → (𝜓𝜏))) → ((𝜓 → (𝜒𝜏)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜏)))))
1614, 15ax-mp 5 . . . . 5 (((𝜓 → (𝜒𝜏)) → (𝜒 → (𝜓𝜏))) → ((𝜓 → (𝜒𝜏)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜏))))
171, 16ax-mp 5 . . . 4 ((𝜓 → (𝜒𝜏)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜏)))
18 pm2.04 90 . . . 4 (((𝜓 → (𝜒𝜏)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜏))) → (((𝜑𝜓) → 𝜒) → ((𝜓 → (𝜒𝜏)) → (𝜓𝜏))))
1917, 18ax-mp 5 . . 3 (((𝜑𝜓) → 𝜒) → ((𝜓 → (𝜒𝜏)) → (𝜓𝜏)))
20 ax-1 6 . . 3 ((((𝜑𝜓) → 𝜒) → ((𝜓 → (𝜒𝜏)) → (𝜓𝜏))) → (𝜃 → (((𝜑𝜓) → 𝜒) → ((𝜓 → (𝜒𝜏)) → (𝜓𝜏)))))
2119, 20ax-mp 5 . 2 (𝜃 → (((𝜑𝜓) → 𝜒) → ((𝜓 → (𝜒𝜏)) → (𝜓𝜏))))
22 pm2.04 90 . 2 ((𝜃 → (((𝜑𝜓) → 𝜒) → ((𝜓 → (𝜒𝜏)) → (𝜓𝜏)))) → (((𝜑𝜓) → 𝜒) → (𝜃 → ((𝜓 → (𝜒𝜏)) → (𝜓𝜏)))))
2321, 22ax-mp 5 1 (((𝜑𝜓) → 𝜒) → (𝜃 → ((𝜓 → (𝜒𝜏)) → (𝜓𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minim-ax1-ax2-lem1  43593  adh-minim-ax1-ax2-lem4  43596
  Copyright terms: Public domain W3C validator