Proof of Theorem adh-minim
Step | Hyp | Ref
| Expression |
1 | | pm2.04 90 |
. . . . 5
⊢ ((𝜓 → (𝜒 → 𝜏)) → (𝜒 → (𝜓 → 𝜏))) |
2 | | adh-jarrsc 44382 |
. . . . . . . 8
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜒))) |
3 | | pm2.04 90 |
. . . . . . . . . . 11
⊢ ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → (𝜒 → 𝜏))) |
4 | | ax-2 7 |
. . . . . . . . . . . 12
⊢ ((𝜓 → (𝜒 → 𝜏)) → ((𝜓 → 𝜒) → (𝜓 → 𝜏))) |
5 | | imim2 58 |
. . . . . . . . . . . 12
⊢ (((𝜓 → (𝜒 → 𝜏)) → ((𝜓 → 𝜒) → (𝜓 → 𝜏))) → (((𝜒 → (𝜓 → 𝜏)) → (𝜓 → (𝜒 → 𝜏))) → ((𝜒 → (𝜓 → 𝜏)) → ((𝜓 → 𝜒) → (𝜓 → 𝜏))))) |
6 | 4, 5 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (((𝜒 → (𝜓 → 𝜏)) → (𝜓 → (𝜒 → 𝜏))) → ((𝜒 → (𝜓 → 𝜏)) → ((𝜓 → 𝜒) → (𝜓 → 𝜏)))) |
7 | 3, 6 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝜒 → (𝜓 → 𝜏)) → ((𝜓 → 𝜒) → (𝜓 → 𝜏))) |
8 | | ax-2 7 |
. . . . . . . . . 10
⊢ (((𝜒 → (𝜓 → 𝜏)) → ((𝜓 → 𝜒) → (𝜓 → 𝜏))) → (((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜒)) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏)))) |
9 | 7, 8 | ax-mp 5 |
. . . . . . . . 9
⊢ (((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜒)) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏))) |
10 | | imim2 58 |
. . . . . . . . 9
⊢ ((((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜒)) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏))) → ((((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜒))) → (((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏))))) |
11 | 9, 10 | ax-mp 5 |
. . . . . . . 8
⊢ ((((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜒))) → (((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏)))) |
12 | 2, 11 | ax-mp 5 |
. . . . . . 7
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏))) |
13 | | pm2.04 90 |
. . . . . . 7
⊢ ((((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏))) → ((𝜒 → (𝜓 → 𝜏)) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜏)))) |
14 | 12, 13 | ax-mp 5 |
. . . . . 6
⊢ ((𝜒 → (𝜓 → 𝜏)) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜏))) |
15 | | imim2 58 |
. . . . . 6
⊢ (((𝜒 → (𝜓 → 𝜏)) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜏))) → (((𝜓 → (𝜒 → 𝜏)) → (𝜒 → (𝜓 → 𝜏))) → ((𝜓 → (𝜒 → 𝜏)) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜏))))) |
16 | 14, 15 | ax-mp 5 |
. . . . 5
⊢ (((𝜓 → (𝜒 → 𝜏)) → (𝜒 → (𝜓 → 𝜏))) → ((𝜓 → (𝜒 → 𝜏)) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜏)))) |
17 | 1, 16 | ax-mp 5 |
. . . 4
⊢ ((𝜓 → (𝜒 → 𝜏)) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜏))) |
18 | | pm2.04 90 |
. . . 4
⊢ (((𝜓 → (𝜒 → 𝜏)) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜏))) → (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) |
19 | 17, 18 | ax-mp 5 |
. . 3
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏))) |
20 | | ax-1 6 |
. . 3
⊢ ((((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏))) → (𝜃 → (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏))))) |
21 | 19, 20 | ax-mp 5 |
. 2
⊢ (𝜃 → (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) |
22 | | pm2.04 90 |
. 2
⊢ ((𝜃 → (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) → (((𝜑 → 𝜓) → 𝜒) → (𝜃 → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏))))) |
23 | 21, 22 | ax-mp 5 |
1
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜃 → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) |