Proof of Theorem adh-minim
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | pm2.04 90 | . . . . 5
⊢ ((𝜓 → (𝜒 → 𝜏)) → (𝜒 → (𝜓 → 𝜏))) | 
| 2 |  | pm2.04 90 | . . . . 5
⊢ ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → (𝜒 → 𝜏))) | 
| 3 |  | adh-jarrsc 47012 | . . . . . . 7
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜒))) | 
| 4 |  | ax-2 7 | . . . . . . . . . . 11
⊢ ((𝜓 → (𝜒 → 𝜏)) → ((𝜓 → 𝜒) → (𝜓 → 𝜏))) | 
| 5 |  | imim2 58 | . . . . . . . . . . 11
⊢ (((𝜓 → (𝜒 → 𝜏)) → ((𝜓 → 𝜒) → (𝜓 → 𝜏))) → (((𝜒 → (𝜓 → 𝜏)) → (𝜓 → (𝜒 → 𝜏))) → ((𝜒 → (𝜓 → 𝜏)) → ((𝜓 → 𝜒) → (𝜓 → 𝜏))))) | 
| 6 | 4, 5 | ax-mp 5 | . . . . . . . . . 10
⊢ (((𝜒 → (𝜓 → 𝜏)) → (𝜓 → (𝜒 → 𝜏))) → ((𝜒 → (𝜓 → 𝜏)) → ((𝜓 → 𝜒) → (𝜓 → 𝜏)))) | 
| 7 | 2, 6 | ax-mp 5 | . . . . . . . . 9
⊢ ((𝜒 → (𝜓 → 𝜏)) → ((𝜓 → 𝜒) → (𝜓 → 𝜏))) | 
| 8 |  | ax-2 7 | . . . . . . . . 9
⊢ (((𝜒 → (𝜓 → 𝜏)) → ((𝜓 → 𝜒) → (𝜓 → 𝜏))) → (((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜒)) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏)))) | 
| 9 | 7, 8 | ax-mp 5 | . . . . . . . 8
⊢ (((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜒)) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏))) | 
| 10 |  | imim2 58 | . . . . . . . 8
⊢ ((((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜒)) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏))) → ((((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜒))) → (((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏))))) | 
| 11 | 9, 10 | ax-mp 5 | . . . . . . 7
⊢ ((((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜒))) → (((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏)))) | 
| 12 | 3, 11 | ax-mp 5 | . . . . . 6
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏))) | 
| 13 |  | pm2.04 90 | . . . . . 6
⊢ ((((𝜑 → 𝜓) → 𝜒) → ((𝜒 → (𝜓 → 𝜏)) → (𝜓 → 𝜏))) → ((𝜒 → (𝜓 → 𝜏)) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜏)))) | 
| 14 | 12, 13 | ax-mp 5 | . . . . 5
⊢ ((𝜒 → (𝜓 → 𝜏)) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜏))) | 
| 15 | 1, 2, 1, 14 | 4syl 19 | . . . 4
⊢ ((𝜓 → (𝜒 → 𝜏)) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜏))) | 
| 16 |  | pm2.04 90 | . . . 4
⊢ (((𝜓 → (𝜒 → 𝜏)) → (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜏))) → (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) | 
| 17 | 15, 16 | ax-mp 5 | . . 3
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏))) | 
| 18 |  | ax-1 6 | . . 3
⊢ ((((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏))) → (𝜃 → (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏))))) | 
| 19 | 17, 18 | ax-mp 5 | . 2
⊢ (𝜃 → (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) | 
| 20 |  | pm2.04 90 | . 2
⊢ ((𝜃 → (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) → (((𝜑 → 𝜓) → 𝜒) → (𝜃 → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏))))) | 
| 21 | 19, 20 | ax-mp 5 | 1
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜃 → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) |