Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minim-ax1-ax2-lem4 Structured version   Visualization version   GIF version

Theorem adh-minim-ax1-ax2-lem4 44387
Description: Fourth lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 44383 and ax-mp 5. Polish prefix notation: CCCpqrCCqCrsCqs . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minim-ax1-ax2-lem4 (((𝜑𝜓) → 𝜒) → ((𝜓 → (𝜒𝜃)) → (𝜓𝜃)))

Proof of Theorem adh-minim-ax1-ax2-lem4
StepHypRef Expression
1 adh-minim 44383 . 2 (((𝜑𝜓) → 𝜒) → ((𝜂 → ((𝜁 → (((𝜑𝜓) → 𝜒) → 𝜎)) → (𝜁𝜎))) → ((𝜓 → (𝜒𝜃)) → (𝜓𝜃))))
2 adh-minim-ax1-ax2-lem2 44385 . 2 ((((𝜑𝜓) → 𝜒) → ((𝜂 → ((𝜁 → (((𝜑𝜓) → 𝜒) → 𝜎)) → (𝜁𝜎))) → ((𝜓 → (𝜒𝜃)) → (𝜓𝜃)))) → (((𝜑𝜓) → 𝜒) → ((𝜓 → (𝜒𝜃)) → (𝜓𝜃))))
31, 2ax-mp 5 1 (((𝜑𝜓) → 𝜒) → ((𝜓 → (𝜒𝜃)) → (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minim-ax1  44388  adh-minim-ax2-lem5  44389  adh-minim-ax2-lem6  44390  adh-minim-ax2c  44391
  Copyright terms: Public domain W3C validator