Mathbox for Adhemar |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > adh-minim-ax1-ax2-lem4 | Structured version Visualization version GIF version |
Description: Fourth lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 44383 and ax-mp 5. Polish prefix notation: CCCpqrCCqCrsCqs . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adh-minim-ax1-ax2-lem4 | ⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜃)) → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adh-minim 44383 | . 2 ⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜂 → ((𝜁 → (((𝜑 → 𝜓) → 𝜒) → 𝜎)) → (𝜁 → 𝜎))) → ((𝜓 → (𝜒 → 𝜃)) → (𝜓 → 𝜃)))) | |
2 | adh-minim-ax1-ax2-lem2 44385 | . 2 ⊢ ((((𝜑 → 𝜓) → 𝜒) → ((𝜂 → ((𝜁 → (((𝜑 → 𝜓) → 𝜒) → 𝜎)) → (𝜁 → 𝜎))) → ((𝜓 → (𝜒 → 𝜃)) → (𝜓 → 𝜃)))) → (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜃)) → (𝜓 → 𝜃)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜃)) → (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: adh-minim-ax1 44388 adh-minim-ax2-lem5 44389 adh-minim-ax2-lem6 44390 adh-minim-ax2c 44391 |
Copyright terms: Public domain | W3C validator |