Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minim-ax1-ax2-lem1 Structured version   Visualization version   GIF version

Theorem adh-minim-ax1-ax2-lem1 44497
Description: First lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 44496 and ax-mp 5. Polish prefix notation: CpCCqCCrCCsCqtCstuCqu . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minim-ax1-ax2-lem1 (𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜂)) → (𝜓𝜂)))

Proof of Theorem adh-minim-ax1-ax2-lem1
StepHypRef Expression
1 adh-minim 44496 . 2 (((𝜁𝜃) → 𝜓) → (𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))))
2 adh-minim 44496 . 2 ((((𝜁𝜃) → 𝜓) → (𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏)))) → (𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜂)) → (𝜓𝜂))))
31, 2ax-mp 5 1 (𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓𝜏)) → (𝜃𝜏))) → 𝜂)) → (𝜓𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minim-ax1-ax2-lem2  44498  adh-minim-ax1-ax2-lem3  44499  adh-minim-ax1  44501
  Copyright terms: Public domain W3C validator