Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minimp Structured version   Visualization version   GIF version

Theorem adh-minimp 44867
Description: Another single axiom for minimal implicational calculus, due to Meredith. Other single axioms of the same length are known, but it is thought to be the minimal length. Among single axioms of this length, it is the one with simplest antecedents (i.e., in the corresponding ordering of binary trees which first compares left subtrees, it is the first one). Known as "HI-2" on Dolph Edward "Ted" Ulrich's web page. In the next 4 lemmas and 5 theorems, ax-1 6 and ax-2 7 are derived from this other single axiom in 20 detachments (instances of ax-mp 5) in total. Polish prefix notation: CpCCqrCCCsqCrtCqt ; or CtCCpqCCCspCqrCpr in Carew Arthur Meredith and Arthur Norman Prior, Notes on the axiomatics of the propositional calculus, Notre Dame Journal of Formal Logic, volume IV, number 3, July 1963, pages 171--187, on page 180. (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.)
Assertion
Ref Expression
adh-minimp (𝜑 → ((𝜓𝜒) → (((𝜃𝜓) → (𝜒𝜏)) → (𝜓𝜏))))

Proof of Theorem adh-minimp
StepHypRef Expression
1 jarr 106 . . . 4 (((𝜃𝜓) → (𝜒𝜏)) → (𝜓 → (𝜒𝜏)))
2 ax-2 7 . . . . 5 ((𝜓 → (𝜒𝜏)) → ((𝜓𝜒) → (𝜓𝜏)))
3 imim2 58 . . . . 5 (((𝜓 → (𝜒𝜏)) → ((𝜓𝜒) → (𝜓𝜏))) → ((((𝜃𝜓) → (𝜒𝜏)) → (𝜓 → (𝜒𝜏))) → (((𝜃𝜓) → (𝜒𝜏)) → ((𝜓𝜒) → (𝜓𝜏)))))
42, 3ax-mp 5 . . . 4 ((((𝜃𝜓) → (𝜒𝜏)) → (𝜓 → (𝜒𝜏))) → (((𝜃𝜓) → (𝜒𝜏)) → ((𝜓𝜒) → (𝜓𝜏))))
51, 4ax-mp 5 . . 3 (((𝜃𝜓) → (𝜒𝜏)) → ((𝜓𝜒) → (𝜓𝜏)))
6 pm2.04 90 . . 3 ((((𝜃𝜓) → (𝜒𝜏)) → ((𝜓𝜒) → (𝜓𝜏))) → ((𝜓𝜒) → (((𝜃𝜓) → (𝜒𝜏)) → (𝜓𝜏))))
75, 6ax-mp 5 . 2 ((𝜓𝜒) → (((𝜃𝜓) → (𝜒𝜏)) → (𝜓𝜏)))
8 ax-1 6 . 2 (((𝜓𝜒) → (((𝜃𝜓) → (𝜒𝜏)) → (𝜓𝜏))) → (𝜑 → ((𝜓𝜒) → (((𝜃𝜓) → (𝜒𝜏)) → (𝜓𝜏)))))
97, 8ax-mp 5 1 (𝜑 → ((𝜓𝜒) → (((𝜃𝜓) → (𝜒𝜏)) → (𝜓𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minimp-jarr-imim1-ax2c-lem1  44868  adh-minimp-jarr-lem2  44869
  Copyright terms: Public domain W3C validator