Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minimp-jarr-lem2 Structured version   Visualization version   GIF version

Theorem adh-minimp-jarr-lem2 44397
Description: Second lemma for the derivation of jarr 106, and indirectly ax-1 6, a commuted form of ax-2 7, and ax-2 7 proper, from adh-minimp 44395 and ax-mp 5. Polish prefix notation: CCCpqCCCrsCCCtrCsuCruvCqv . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minimp-jarr-lem2 (((𝜑𝜓) → (((𝜒𝜃) → (((𝜏𝜒) → (𝜃𝜂)) → (𝜒𝜂))) → 𝜁)) → (𝜓𝜁))

Proof of Theorem adh-minimp-jarr-lem2
StepHypRef Expression
1 adh-minimp 44395 . 2 (𝜓 → ((𝜒𝜃) → (((𝜏𝜒) → (𝜃𝜂)) → (𝜒𝜂))))
2 adh-minimp-jarr-imim1-ax2c-lem1 44396 . 2 ((𝜓 → ((𝜒𝜃) → (((𝜏𝜒) → (𝜃𝜂)) → (𝜒𝜂)))) → (((𝜑𝜓) → (((𝜒𝜃) → (((𝜏𝜒) → (𝜃𝜂)) → (𝜒𝜂))) → 𝜁)) → (𝜓𝜁)))
31, 2ax-mp 5 1 (((𝜑𝜓) → (((𝜒𝜃) → (((𝜏𝜒) → (𝜃𝜂)) → (𝜒𝜂))) → 𝜁)) → (𝜓𝜁))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minimp-jarr-ax2c-lem3  44398  adh-minimp-sylsimp  44399
  Copyright terms: Public domain W3C validator