Mathbox for Adhemar |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > adh-minimp-jarr-lem2 | Structured version Visualization version GIF version |
Description: Second lemma for the derivation of jarr 106, and indirectly ax-1 6, a commuted form of ax-2 7, and ax-2 7 proper, from adh-minimp 44395 and ax-mp 5. Polish prefix notation: CCCpqCCCrsCCCtrCsuCruvCqv . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adh-minimp-jarr-lem2 | ⊢ (((𝜑 → 𝜓) → (((𝜒 → 𝜃) → (((𝜏 → 𝜒) → (𝜃 → 𝜂)) → (𝜒 → 𝜂))) → 𝜁)) → (𝜓 → 𝜁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adh-minimp 44395 | . 2 ⊢ (𝜓 → ((𝜒 → 𝜃) → (((𝜏 → 𝜒) → (𝜃 → 𝜂)) → (𝜒 → 𝜂)))) | |
2 | adh-minimp-jarr-imim1-ax2c-lem1 44396 | . 2 ⊢ ((𝜓 → ((𝜒 → 𝜃) → (((𝜏 → 𝜒) → (𝜃 → 𝜂)) → (𝜒 → 𝜂)))) → (((𝜑 → 𝜓) → (((𝜒 → 𝜃) → (((𝜏 → 𝜒) → (𝜃 → 𝜂)) → (𝜒 → 𝜂))) → 𝜁)) → (𝜓 → 𝜁))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (((𝜑 → 𝜓) → (((𝜒 → 𝜃) → (((𝜏 → 𝜒) → (𝜃 → 𝜂)) → (𝜒 → 𝜂))) → 𝜁)) → (𝜓 → 𝜁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: adh-minimp-jarr-ax2c-lem3 44398 adh-minimp-sylsimp 44399 |
Copyright terms: Public domain | W3C validator |