Users' Mathboxes Mathbox for Adhemar < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adh-minimp-jarr-imim1-ax2c-lem1 Structured version   Visualization version   GIF version

Theorem adh-minimp-jarr-imim1-ax2c-lem1 44509
Description: First lemma for the derivation of jarr 106, imim1 83, and a commuted form of ax-2 7, and indirectly ax-1 6 and ax-2 7, from adh-minimp 44508 and ax-mp 5. Polish prefix notation: CCpqCCCrpCqsCps . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
adh-minimp-jarr-imim1-ax2c-lem1 ((𝜑𝜓) → (((𝜒𝜑) → (𝜓𝜃)) → (𝜑𝜃)))

Proof of Theorem adh-minimp-jarr-imim1-ax2c-lem1
StepHypRef Expression
1 adh-minimp 44508 . 2 (𝜂 → ((𝜁𝜎) → (((𝜌𝜁) → (𝜎𝜇)) → (𝜁𝜇))))
2 adh-minimp 44508 . 2 ((𝜂 → ((𝜁𝜎) → (((𝜌𝜁) → (𝜎𝜇)) → (𝜁𝜇)))) → ((𝜑𝜓) → (((𝜒𝜑) → (𝜓𝜃)) → (𝜑𝜃))))
31, 2ax-mp 5 1 ((𝜑𝜓) → (((𝜒𝜑) → (𝜓𝜃)) → (𝜑𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  adh-minimp-jarr-lem2  44510  adh-minimp-sylsimp  44512  adh-minimp-imim1  44514  adh-minimp-ax2c  44515
  Copyright terms: Public domain W3C validator