Mathbox for Adhemar |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > adh-minimp-jarr-imim1-ax2c-lem1 | Structured version Visualization version GIF version |
Description: First lemma for the derivation of jarr 106, imim1 83, and a commuted form of ax-2 7, and indirectly ax-1 6 and ax-2 7, from adh-minimp 44395 and ax-mp 5. Polish prefix notation: CCpqCCCrpCqsCps . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adh-minimp-jarr-imim1-ax2c-lem1 | ⊢ ((𝜑 → 𝜓) → (((𝜒 → 𝜑) → (𝜓 → 𝜃)) → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adh-minimp 44395 | . 2 ⊢ (𝜂 → ((𝜁 → 𝜎) → (((𝜌 → 𝜁) → (𝜎 → 𝜇)) → (𝜁 → 𝜇)))) | |
2 | adh-minimp 44395 | . 2 ⊢ ((𝜂 → ((𝜁 → 𝜎) → (((𝜌 → 𝜁) → (𝜎 → 𝜇)) → (𝜁 → 𝜇)))) → ((𝜑 → 𝜓) → (((𝜒 → 𝜑) → (𝜓 → 𝜃)) → (𝜑 → 𝜃)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (((𝜒 → 𝜑) → (𝜓 → 𝜃)) → (𝜑 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: adh-minimp-jarr-lem2 44397 adh-minimp-sylsimp 44399 adh-minimp-imim1 44401 adh-minimp-ax2c 44402 |
Copyright terms: Public domain | W3C validator |