| Metamath
Proof Explorer Theorem List (p. 461 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ismbl3 46001* | The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl2 25562, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥 ∩ 𝐴)) +𝑒 (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥))) | ||
| Theorem | volioof 46002 | The function that assigns the Lebesgue measure to open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞) | ||
| Theorem | ovolsplit 46003 | The Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts, using addition for extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → (vol*‘𝐴) ≤ ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) | ||
| Theorem | fvvolioof 46004 | The function value of the Lebesgue measure of an open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))))) | ||
| Theorem | volioore 46005 | The measure of an open interval. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) = if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0)) | ||
| Theorem | fvvolicof 46006 | The function value of the Lebesgue measure of a left-closed right-open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))))) | ||
| Theorem | voliooico 46007 | An open interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) | ||
| Theorem | ismbl4 46008* | The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl 25561, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) +𝑒 (vol*‘(𝑥 ∖ 𝐴))))) | ||
| Theorem | volioofmpt 46009* | ((vol ∘ (,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) ⇒ ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))(,)(2nd ‘(𝐹‘𝑥)))))) | ||
| Theorem | volicoff 46010 | ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) ⇒ ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) | ||
| Theorem | voliooicof 46011 | The Lebesgue measure of open intervals is the same as the Lebesgue measure of left-closed right-open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ)) ⇒ ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹)) | ||
| Theorem | volicofmpt 46012* | ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) ⇒ ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))))) | ||
| Theorem | volicc 46013 | The Lebesgue measure of a closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | voliccico 46014 | A closed interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵))) | ||
| Theorem | mbfdmssre 46015 | The domain of a measurable function is a subset of the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ) | ||
| Theorem | stoweidlem1 46016 | Lemma for stoweid 46078. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90; the key step uses Bernoulli's inequality bernneq 14268. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 1) & ⊢ (𝜑 → 𝐷 ≤ 𝐴) ⇒ ⊢ (𝜑 → ((1 − (𝐴↑𝑁))↑(𝐾↑𝑁)) ≤ (1 / ((𝐾 · 𝐷)↑𝑁))) | ||
| Theorem | stoweidlem2 46017* | lemma for stoweid 46078: here we prove that the subalgebra of continuous functions, which contains constant functions, is closed under scaling. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ (𝐸 · (𝐹‘𝑡))) ∈ 𝐴) | ||
| Theorem | stoweidlem3 46018* | Lemma for stoweid 46078: if 𝐴 is positive and all 𝑀 terms of a finite product are larger than 𝐴, then the finite product is larger than 𝐴↑𝑀. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑖𝐹 & ⊢ Ⅎ𝑖𝜑 & ⊢ 𝑋 = seq1( · , 𝐹) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀)) | ||
| Theorem | stoweidlem4 46019* | Lemma for stoweid 46078: a class variable replaces a setvar variable, for constant functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴) | ||
| Theorem | stoweidlem5 46020* | There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on 𝑇 ∖ 𝑈. Here 𝐷 is used to represent δ in the paper and 𝑄 to represent 𝑇 ∖ 𝑈 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑄 ⊆ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐶 ≤ (𝑃‘𝑡)) ⇒ ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡))) | ||
| Theorem | stoweidlem6 46021* | Lemma for stoweid 46078: two class variables replace two setvar variables, for multiplication of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡 𝑓 = 𝐹 & ⊢ Ⅎ𝑡 𝑔 = 𝐺 & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝐺‘𝑡))) ∈ 𝐴) | ||
| Theorem | stoweidlem7 46022* | This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on 𝑇 ∖ 𝑈, and qn > 1 - ε on 𝑉. Here it is proven that, for 𝑛 large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable 𝐴 is used to represent (k*δ) in the paper, and 𝐵 is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖)) & ⊢ 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵↑𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 < 1) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵↑𝑛)) ∧ (1 / (𝐴↑𝑛)) < 𝐸)) | ||
| Theorem | stoweidlem8 46023* | Lemma for stoweid 46078: two class variables replace two setvar variables, for the sum of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝐺 ⇒ ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐴) | ||
| Theorem | stoweidlem9 46024* | Lemma for stoweid 46078: here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝜑 → 𝑇 = ∅) & ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) | ||
| Theorem | stoweidlem10 46025 | Lemma for stoweid 46078. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁)) | ||
| Theorem | stoweidlem11 46026* | This lemma is used to prove that there is a function 𝑔 as in the proof of [BrosowskiDeutsh] p. 92 (at the top of page 92): this lemma proves that g(t) < ( j + 1 / 3 ) * ε. Here 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑡 ∈ 𝑇) & ⊢ (𝜑 → 𝑗 ∈ (1...𝑁)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁)) → (𝑋‘𝑖):𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁)) → ((𝑋‘𝑖)‘𝑡) ≤ 1) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑋‘𝑖)‘𝑡) < (𝐸 / 𝑁)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) ⇒ ⊢ (𝜑 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)) | ||
| Theorem | stoweidlem12 46027* | Lemma for stoweid 46078. This Lemma is used by other three Lemmas. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑄‘𝑡) = ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) | ||
| Theorem | stoweidlem13 46028 | Lemma for stoweid 46078. This lemma is used to prove the statement abs( f(t) - g(t) ) < 2 epsilon, in the last step of the proof in [BrosowskiDeutsh] p. 92. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑗 ∈ ℝ) & ⊢ (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋) & ⊢ (𝜑 → 𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸)) & ⊢ (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌) & ⊢ (𝜑 → 𝑌 < ((𝑗 + (1 / 3)) · 𝐸)) ⇒ ⊢ (𝜑 → (abs‘(𝑌 − 𝑋)) < (2 · 𝐸)) | ||
| Theorem | stoweidlem14 46029* | There exists a 𝑘 as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 𝑘 is an integer and 1 < k * δ < 2. 𝐷 is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝐴 = {𝑗 ∈ ℕ ∣ (1 / 𝐷) < 𝑗} & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 < 1) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ ℕ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) | ||
| Theorem | stoweidlem15 46030* | This lemma is used to prove the existence of a function 𝑝 as in Lemma 1 from [BrosowskiDeutsh] p. 90: 𝑝 is in the subalgebra, such that 0 ≤ p ≤ 1, p_(t0) = 0, and p > 0 on T - U. Here (𝐺‘𝐼) is used to represent p_(ti) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ (((𝜑 ∧ 𝐼 ∈ (1...𝑀)) ∧ 𝑆 ∈ 𝑇) → (((𝐺‘𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺‘𝐼)‘𝑆) ∧ ((𝐺‘𝐼)‘𝑆) ≤ 1)) | ||
| Theorem | stoweidlem16 46031* | Lemma for stoweid 46078. The subset 𝑌 of functions in the algebra 𝐴, with values in [ 0 , 1 ], is closed under multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → 𝐻 ∈ 𝑌) | ||
| Theorem | stoweidlem17 46032* | This lemma proves that the function 𝑔 (as defined in [BrosowskiDeutsh] p. 91, at the end of page 91) belongs to the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑋:(0...𝑁)⟶𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) | ||
| Theorem | stoweidlem18 46033* | This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐷 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ 1) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 = ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) | ||
| Theorem | stoweidlem19 46034* | If a set of real functions is closed under multiplication and it contains constants, then it is closed under finite exponentiation. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝜑 & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡)↑𝑁)) ∈ 𝐴) | ||
| Theorem | stoweidlem20 46035* | If a set A of real functions from a common domain T is closed under the sum of two functions, then it is closed under the sum of a finite number of functions, indexed by G. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐴) | ||
| Theorem | stoweidlem21 46036* | Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐺 & ⊢ Ⅎ𝑡𝐻 & ⊢ Ⅎ𝑡𝑆 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐺 = (𝑡 ∈ 𝑇 ↦ ((𝐻‘𝑡) + 𝑆)) & ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑆 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → ∀𝑓 ∈ 𝐴 𝑓:𝑇⟶ℝ) & ⊢ (𝜑 → 𝐻 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (abs‘((𝐻‘𝑡) − ((𝐹‘𝑡) − 𝑆))) < 𝐸) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸) | ||
| Theorem | stoweidlem22 46037* | If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝐺 & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) & ⊢ 𝐼 = (𝑡 ∈ 𝑇 ↦ -1) & ⊢ 𝐿 = (𝑡 ∈ 𝑇 ↦ ((𝐼‘𝑡) · (𝐺‘𝑡))) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) ∈ 𝐴) | ||
| Theorem | stoweidlem23 46038* | This lemma is used to prove the existence of a function pt as in the beginning of Lemma 1 [BrosowskiDeutsh] p. 90: for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑡𝐺 & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) − (𝐺‘𝑍))) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝑇) & ⊢ (𝜑 → 𝑍 ∈ 𝑇) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ (𝜑 → (𝐺‘𝑆) ≠ (𝐺‘𝑍)) ⇒ ⊢ (𝜑 → (𝐻 ∈ 𝐴 ∧ (𝐻‘𝑆) ≠ (𝐻‘𝑍) ∧ (𝐻‘𝑍) = 0)) | ||
| Theorem | stoweidlem24 46039* | This lemma proves that for 𝑛 sufficiently large, qn( t ) > ( 1 - epsilon ), for all 𝑡 in 𝑉: see Lemma 1 [BrosowskiDeutsh] p. 90, (at the bottom of page 90). 𝑄 is used to represent qn in the paper, 𝑁 to represent 𝑛 in the paper, 𝐾 to represent 𝑘, 𝐷 to represent δ, and 𝐸 to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝑉 = {𝑡 ∈ 𝑇 ∣ (𝑃‘𝑡) < (𝐷 / 2)} & ⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (1 − 𝐸) < (1 − (((𝐾 · 𝐷) / 2)↑𝑁))) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑉) → (1 − 𝐸) < (𝑄‘𝑡)) | ||
| Theorem | stoweidlem25 46040* | This lemma proves that for n sufficiently large, qn( t ) < ε, for all 𝑡 in 𝑇 ∖ 𝑈: see Lemma 1 [BrosowskiDeutsh] p. 91 (at the top of page 91). 𝑄 is used to represent qn in the paper, 𝑁 to represent n in the paper, 𝐾 to represent k, 𝐷 to represent δ, 𝑃 to represent p, and 𝐸 to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸) ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑄‘𝑡) < 𝐸) | ||
| Theorem | stoweidlem26 46041* | This lemma is used to prove that there is a function 𝑔 as in the proof of [BrosowskiDeutsh] p. 92: this lemma proves that g(t) > ( j - 4 / 3 ) * ε. Here 𝐿 is used to represent j in the paper, 𝐷 is used to represent A in the paper, 𝑆 is used to represent t, and 𝐸 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) & ⊢ 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑆 ∈ ((𝐷‘𝐿) ∖ (𝐷‘(𝐿 − 1)))) & ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁)) → (𝑋‘𝑖):𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ 𝑇) → 0 ≤ ((𝑋‘𝑖)‘𝑡)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵‘𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋‘𝑖)‘𝑡)) ⇒ ⊢ (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑆)) | ||
| Theorem | stoweidlem27 46042* | This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Here (𝑞‘𝑖) is used to represent p_(ti) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝐺 = (𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) & ⊢ (𝜑 → 𝑄 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑌 Fn ran 𝐺) & ⊢ (𝜑 → ran 𝐺 ∈ V) & ⊢ ((𝜑 ∧ 𝑙 ∈ ran 𝐺) → (𝑌‘𝑙) ∈ 𝑙) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→ran 𝐺) & ⊢ (𝜑 → (𝑇 ∖ 𝑈) ⊆ ∪ 𝑋) & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎℎ𝑄 ⇒ ⊢ (𝜑 → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡)))) | ||
| Theorem | stoweidlem28 46043* | There exists a δ as in Lemma 1 [BrosowskiDeutsh] p. 90: 0 < delta < 1 and p >= delta on 𝑇 ∖ 𝑈. Here 𝑑 is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑃‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) ⇒ ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑃‘𝑡))) | ||
| Theorem | stoweidlem29 46044* | When the hypothesis for the extreme value theorem hold, then the inf of the range of the function belongs to the range, it is real and it a lower bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) (Revised by AV, 13-Sep-2020.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑇 ≠ ∅) ⇒ ⊢ (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹‘𝑡))) | ||
| Theorem | stoweidlem30 46045* | This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (𝑃‘𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑆))) | ||
| Theorem | stoweidlem31 46046* | This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91: assuming that 𝑅 is a finite subset of 𝑉, 𝑥 indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all 𝑖 ranging in the finite indexing set, 0 ≤ xi ≤ 1, xi < ε / m on V(ti), and xi > 1 - ε / m on 𝐵. Here M is used to represent m in the paper, 𝐸 is used to represent ε in the paper, vi is used to represent V(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎℎ𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝑉 = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} & ⊢ 𝐺 = (𝑤 ∈ 𝑅 ↦ {ℎ ∈ 𝐴 ∣ (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − (𝐸 / 𝑀)) < (ℎ‘𝑡))}) & ⊢ (𝜑 → 𝑅 ⊆ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑣:(1...𝑀)–1-1-onto→𝑅) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ⊆ (𝑇 ∖ 𝑈)) & ⊢ (𝜑 → 𝑉 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → ran 𝐺 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑥(𝑥:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑥‘𝑖)‘𝑡)))) | ||
| Theorem | stoweidlem32 46047* | If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ (𝑌 · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡)) & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ (𝜑 → 𝑃 ∈ 𝐴) | ||
| Theorem | stoweidlem33 46048* | If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝐺 & ⊢ Ⅎ𝑡𝜑 & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − (𝐺‘𝑡))) ∈ 𝐴) | ||
| Theorem | stoweidlem34 46049* | This lemma proves that for all 𝑡 in 𝑇 there is a 𝑗 as in the proof of [BrosowskiDeutsh] p. 91 (at the bottom of page 91 and at the top of page 92): (j-4/3) * ε < f(t) <= (j-1/3) * ε , g(t) < (j+1/3) * ε, and g(t) > (j-4/3) * ε. Here 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) & ⊢ 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) & ⊢ 𝐽 = (𝑡 ∈ 𝑇 ↦ {𝑗 ∈ (1...𝑁) ∣ 𝑡 ∈ (𝐷‘𝑗)}) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 0 ≤ (𝐹‘𝑡)) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) < ((𝑁 − 1) · 𝐸)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑋‘𝑗):𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ 𝑇) → 0 ≤ ((𝑋‘𝑗)‘𝑡)) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ 𝑇) → ((𝑋‘𝑗)‘𝑡) ≤ 1) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐷‘𝑗)) → ((𝑋‘𝑗)‘𝑡) < (𝐸 / 𝑁)) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵‘𝑗)) → (1 − (𝐸 / 𝑁)) < ((𝑋‘𝑗)‘𝑡)) ⇒ ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡)))) | ||
| Theorem | stoweidlem35 46050* | This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Here (𝑞‘𝑖) is used to represent p_(ti) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎℎ𝜑 & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} & ⊢ 𝐺 = (𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ⊆ 𝑊) & ⊢ (𝜑 → (𝑇 ∖ 𝑈) ⊆ ∪ 𝑋) & ⊢ (𝜑 → (𝑇 ∖ 𝑈) ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑚∃𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞‘𝑖)‘𝑡)))) | ||
| Theorem | stoweidlem36 46051* | This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Z is used for t0 , S is used for t e. T - U , h is used for pt . G is used for (ht)^2 and the final h is a normalized version of G ( divided by its norm, see the variable N ). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎℎ𝑄 & ⊢ Ⅎ𝑡𝐻 & ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝐺 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐺 = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝐹‘𝑡))) & ⊢ 𝑁 = sup(ran 𝐺, ℝ, < ) & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝐺‘𝑡) / 𝑁)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝑇) & ⊢ (𝜑 → 𝑍 ∈ 𝑇) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) & ⊢ (𝜑 → (𝐹‘𝑆) ≠ (𝐹‘𝑍)) & ⊢ (𝜑 → (𝐹‘𝑍) = 0) ⇒ ⊢ (𝜑 → ∃ℎ(ℎ ∈ 𝑄 ∧ 0 < (ℎ‘𝑆))) | ||
| Theorem | stoweidlem37 46052* | This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑍 ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝑃‘𝑍) = 0) | ||
| Theorem | stoweidlem38 46053* | This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺‘𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑆 ∈ 𝑇) → (0 ≤ (𝑃‘𝑆) ∧ (𝑃‘𝑆) ≤ 1)) | ||
| Theorem | stoweidlem39 46054* | This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91: assuming that 𝑟 is a finite subset of 𝑊, 𝑥 indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all i ranging in the finite indexing set, 0 ≤ xi ≤ 1, xi < ε / m on V(ti), and xi > 1 - ε / m on 𝐵. Here 𝐷 is used to represent A in the paper's Lemma 2 (because 𝐴 is used for the subalgebra), 𝑀 is used to represent m in the paper, 𝐸 is used to represent ε, and vi is used to represent V(ti). 𝑊 is just a local definition, used to shorten statements. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎℎ𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ 𝑈 = (𝑇 ∖ 𝐵) & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} & ⊢ (𝜑 → 𝑟 ∈ (𝒫 𝑊 ∩ Fin)) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑟) & ⊢ (𝜑 → 𝐷 ≠ ∅) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ⊆ 𝑇) & ⊢ (𝜑 → 𝑊 ∈ V) & ⊢ (𝜑 → 𝐴 ∈ V) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊 ∧ 𝐷 ⊆ ∪ ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣‘𝑖)((𝑥‘𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥‘𝑖)‘𝑡))))) | ||
| Theorem | stoweidlem40 46055* | This lemma proves that qn is in the subalgebra, as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90. Q is used to represent qn in the paper, N is used to represent n in the paper, and M is used to represent k^n in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝑃 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑𝑀)) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (1 − ((𝑃‘𝑡)↑𝑁))) & ⊢ 𝐺 = (𝑡 ∈ 𝑇 ↦ 1) & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝑃‘𝑡)↑𝑁)) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝑄 ∈ 𝐴) | ||
| Theorem | stoweidlem41 46056* | This lemma is used to prove that there exists x as in Lemma 1 of [BrosowskiDeutsh] p. 90: 0 <= x(t) <= 1 for all t in T, x(t) < epsilon for all t in V, x(t) > 1 - epsilon for all t in T \ U. Here we prove the very last step of the proof of Lemma 1: "The result follows from taking x = 1 - qn". Here 𝐸 is used to represent ε in the paper, and 𝑦 to represent qn in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑋 = (𝑡 ∈ 𝑇 ↦ (1 − (𝑦‘𝑡))) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ 1) & ⊢ 𝑉 ⊆ 𝑇 & ⊢ (𝜑 → 𝑦 ∈ 𝐴) & ⊢ (𝜑 → 𝑦:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑤) ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑉 (1 − 𝐸) < (𝑦‘𝑡)) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝐸) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝐸) < (𝑥‘𝑡))) | ||
| Theorem | stoweidlem42 46057* | This lemma is used to prove that 𝑥 built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x > 1 - ε on B. Here 𝑋 is used to represent 𝑥 in the paper, and E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑡𝑌 & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) & ⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈‘𝑖)‘𝑡)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝐵 ⊆ 𝑇) ⇒ ⊢ (𝜑 → ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑋‘𝑡)) | ||
| Theorem | stoweidlem43 46058* | This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function pt in the subalgebra, such that pt( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Hera Z is used for t0 , S is used for t e. T - U , h is used for pt. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑔𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎℎ𝑄 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑇 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑙‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑙 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑙‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑔 ∈ 𝐴 (𝑔‘𝑟) ≠ (𝑔‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝑆 ∈ (𝑇 ∖ 𝑈)) ⇒ ⊢ (𝜑 → ∃ℎ(ℎ ∈ 𝑄 ∧ 0 < (ℎ‘𝑆))) | ||
| Theorem | stoweidlem44 46059* | This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑃 = (𝑡 ∈ 𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺‘𝑖)‘𝑡))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑗 ∈ (1...𝑀)0 < ((𝐺‘𝑗)‘𝑡)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝑍 ∈ 𝑇) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) | ||
| Theorem | stoweidlem45 46060* | This lemma proves that, given an appropriate 𝐾 (in another theorem we prove such a 𝐾 exists), there exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 ( at the top of page 91): 0 <= qn <= 1 , qn < ε on T \ U, and qn > 1 - ε on 𝑉. We use y to represent the final qn in the paper (the one with n large enough), 𝑁 to represent 𝑛 in the paper, 𝐾 to represent 𝑘, 𝐷 to represent δ, 𝐸 to represent ε, and 𝑃 to represent 𝑝. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝑃 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑉 = {𝑡 ∈ 𝑇 ∣ (𝑃‘𝑡) < (𝐷 / 2)} & ⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 < 1) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → (1 − 𝐸) < (1 − (((𝐾 · 𝐷) / 2)↑𝑁))) & ⊢ (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝐸) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝐸)) | ||
| Theorem | stoweidlem46 46061* | This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, are a cover of T \ U. Using this lemma, in a later theorem we will prove that a finite subcover exists. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎℎ𝑄 & ⊢ Ⅎ𝑞𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} & ⊢ 𝑇 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐴 ⊆ (𝐽 Cn 𝐾)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝑇 ∈ V) ⇒ ⊢ (𝜑 → (𝑇 ∖ 𝑈) ⊆ ∪ 𝑊) | ||
| Theorem | stoweidlem47 46062* | Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝑆 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐺 = (𝑇 × {-𝑆}) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) & ⊢ (𝜑 → 𝑆 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − 𝑆)) ∈ 𝐶) | ||
| Theorem | stoweidlem48 46063* | This lemma is used to prove that 𝑥 built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x < ε on 𝐴. Here 𝑋 is used to represent 𝑥 in the paper, 𝐸 is used to represent ε in the paper, and 𝐷 is used to represent 𝐴 in the paper (because 𝐴 is always used to represent the subalgebra). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) & ⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑊:(1...𝑀)⟶𝑉) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ (𝜑 → 𝐷 ⊆ ∪ ran 𝑊) & ⊢ (𝜑 → 𝐷 ⊆ 𝑇) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊‘𝑖)((𝑈‘𝑖)‘𝑡) < 𝐸) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∀𝑡 ∈ 𝐷 (𝑋‘𝑡) < 𝐸) | ||
| Theorem | stoweidlem49 46064* | There exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 (at the top of page 91): 0 <= qn <= 1 , qn < ε on 𝑇 ∖ 𝑈, and qn > 1 - ε on 𝑉. Here y is used to represent the final qn in the paper (the one with n large enough), 𝑁 represents 𝑛 in the paper, 𝐾 represents 𝑘, 𝐷 represents δ, 𝐸 represents ε, and 𝑃 represents 𝑝. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝑃 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑉 = {𝑡 ∈ 𝑇 ∣ (𝑃‘𝑡) < (𝐷 / 2)} & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 < 1) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑉 (1 − 𝐸) < (𝑦‘𝑡) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑦‘𝑡) < 𝐸)) | ||
| Theorem | stoweidlem50 46065* | This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢 ⊆ 𝑊 ∧ (𝑇 ∖ 𝑈) ⊆ ∪ 𝑢)) | ||
| Theorem | stoweidlem51 46066* | There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here 𝐷 is used to represent 𝐴 in the paper, because here 𝐴 is used for the subalgebra of functions. 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑤𝑉 & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) & ⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑊:(1...𝑀)⟶𝑉) & ⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) & ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑤 ⊆ 𝑇) & ⊢ (𝜑 → 𝐷 ⊆ ∪ ran 𝑊) & ⊢ (𝜑 → 𝐷 ⊆ 𝑇) & ⊢ (𝜑 → 𝐵 ⊆ 𝑇) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊‘𝑖)((𝑈‘𝑖)‘𝑡) < (𝐸 / 𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈‘𝑖)‘𝑡)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) ⇒ ⊢ (𝜑 → ∃𝑥(𝑥 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡)))) | ||
| Theorem | stoweidlem52 46067* | There exists a neighborhood V as in Lemma 1 of [BrosowskiDeutsh] p. 90. Here Z is used to represent t0 in the paper, and v is used to represent V in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑡𝑃 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑉 = {𝑡 ∈ 𝑇 ∣ (𝑃‘𝑡) < (𝐷 / 2)} & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 < 1) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝑃‘𝑡) ∧ (𝑃‘𝑡) ≤ 1)) & ⊢ (𝜑 → (𝑃‘𝑍) = 0) & ⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝐷 ≤ (𝑃‘𝑡)) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ 𝐽 ((𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)))) | ||
| Theorem | stoweidlem53 46068* | This lemma is used to prove the existence of a function 𝑝 as in Lemma 1 of [BrosowskiDeutsh] p. 90: 𝑝 is in the subalgebra, such that 0 ≤ 𝑝 ≤ 1, p_(t0) = 0, and 0 < 𝑝 on 𝑇 ∖ 𝑈. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → (𝑇 ∖ 𝑈) ≠ ∅) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) | ||
| Theorem | stoweidlem54 46069* | There exists a function 𝑥 as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here 𝐷 is used to represent 𝐴 in the paper, because here 𝐴 is used for the subalgebra of functions. 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑦‘𝑖)‘𝑡))) & ⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) & ⊢ 𝑉 = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑊:(1...𝑀)⟶𝑉) & ⊢ (𝜑 → 𝐵 ⊆ 𝑇) & ⊢ (𝜑 → 𝐷 ⊆ ∪ ran 𝑊) & ⊢ (𝜑 → 𝐷 ⊆ 𝑇) & ⊢ (𝜑 → ∃𝑦(𝑦:(1...𝑀)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑀)(∀𝑡 ∈ (𝑊‘𝑖)((𝑦‘𝑖)‘𝑡) < (𝐸 / 𝑀) ∧ ∀𝑡 ∈ 𝐵 (1 − (𝐸 / 𝑀)) < ((𝑦‘𝑖)‘𝑡)))) & ⊢ (𝜑 → 𝑇 ∈ V) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) | ||
| Theorem | stoweidlem55 46070* | This lemma proves the existence of a function p as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Here Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) | ||
| Theorem | stoweidlem56 46071* | This theorem proves Lemma 1 in [BrosowskiDeutsh] p. 90. Here 𝑍 is used to represent t0 in the paper, 𝑣 is used to represent 𝑉 in the paper, and 𝑒 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑦) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ 𝐽 ((𝑍 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑈) ∧ ∀𝑒 ∈ ℝ+ ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑣 (𝑥‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (𝑥‘𝑡)))) | ||
| Theorem | stoweidlem57 46072* | There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. In this theorem, it is proven the non-trivial case (the closed set D is nonempty). Here D is used to represent A in the paper, because the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐷 & ⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝑉 = {𝑤 ∈ 𝐽 ∣ ∀𝑒 ∈ ℝ+ ∃ℎ ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝑤 (ℎ‘𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 − 𝑒) < (ℎ‘𝑡))} & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ 𝑈 = (𝑇 ∖ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝐷 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐷 ≠ ∅) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) | ||
| Theorem | stoweidlem58 46073* | This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐷 & ⊢ Ⅎ𝑡𝑈 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝐷 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) & ⊢ 𝑈 = (𝑇 ∖ 𝐵) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) | ||
| Theorem | stoweidlem59 46074* | This lemma proves that there exists a function 𝑥 as in the proof in [BrosowskiDeutsh] p. 91, after Lemma 2: xj is in the subalgebra, 0 <= xj <= 1, xj < ε / n on Aj (meaning A in the paper), xj > 1 - \epsilon / n on Bj. Here 𝐷 is used to represent A in the paper (because A is used for the subalgebra of functions), 𝐸 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) & ⊢ 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) & ⊢ 𝑌 = {𝑦 ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (𝑦‘𝑡) ∧ (𝑦‘𝑡) ≤ 1)} & ⊢ 𝐻 = (𝑗 ∈ (0...𝑁) ↦ {𝑦 ∈ 𝑌 ∣ (∀𝑡 ∈ (𝐷‘𝑗)(𝑦‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < (𝑦‘𝑡))}) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑦) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ∃𝑥(𝑥:(0...𝑁)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑁)(∀𝑡 ∈ 𝑇 (0 ≤ ((𝑥‘𝑗)‘𝑡) ∧ ((𝑥‘𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷‘𝑗)((𝑥‘𝑗)‘𝑡) < (𝐸 / 𝑁) ∧ ∀𝑡 ∈ (𝐵‘𝑗)(1 − (𝐸 / 𝑁)) < ((𝑥‘𝑗)‘𝑡)))) | ||
| Theorem | stoweidlem60 46075* | This lemma proves that there exists a function g as in the proof in [BrosowskiDeutsh] p. 91 (this parte of the proof actually spans through pages 91-92): g is in the subalgebra, and for all 𝑡 in 𝑇, there is a 𝑗 such that (j-4/3)*ε < f(t) <= (j-1/3)*ε and (j-4/3)*ε < g(t) < (j+1/3)*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ 𝐷 = (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) & ⊢ 𝐵 = (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝑇 ≠ ∅) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑦) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 0 ≤ (𝐹‘𝑡)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) | ||
| Theorem | stoweidlem61 46076* | This lemma proves that there exists a function 𝑔 as in the proof in [BrosowskiDeutsh] p. 92: 𝑔 is in the subalgebra, and for all 𝑡 in 𝑇, abs( f(t) - g(t) ) < 2*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. For this lemma there's the further assumption that the function 𝐹 to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ (𝜑 → 𝑇 ≠ ∅) & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 0 ≤ (𝐹‘𝑡)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) | ||
| Theorem | stoweidlem62 46077* | This theorem proves the Stone Weierstrass theorem for the non-trivial case in which T is nonempty. The proof follows [BrosowskiDeutsh] p. 89 (through page 92). (Contributed by Glauco Siliprandi, 20-Apr-2017.) (Revised by AV, 13-Sep-2020.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑓𝜑 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) − inf(ran 𝐹, ℝ, < ))) & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝑇 ≠ ∅) & ⊢ (𝜑 → 𝐸 < (1 / 3)) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸) | ||
| Theorem | stoweid 46078* | This theorem proves the Stone-Weierstrass theorem for real-valued functions: let 𝐽 be a compact topology on 𝑇, and 𝐶 be the set of real continuous functions on 𝑇. Assume that 𝐴 is a subalgebra of 𝐶 (closed under addition and multiplication of functions) containing constant functions and discriminating points (if 𝑟 and 𝑡 are distinct points in 𝑇, then there exists a function ℎ in 𝐴 such that h(r) is distinct from h(t) ). Then, for any continuous function 𝐹 and for any positive real 𝐸, there exists a function 𝑓 in the subalgebra 𝐴, such that 𝑓 approximates 𝐹 up to 𝐸 (𝐸 represents the usual ε value). As a classical example, given any a, b reals, the closed interval 𝑇 = [𝑎, 𝑏] could be taken, along with the subalgebra 𝐴 of real polynomials on 𝑇, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on [𝑎, 𝑏]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃ℎ ∈ 𝐴 (ℎ‘𝑟) ≠ (ℎ‘𝑡)) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸) | ||
| Theorem | stowei 46079* | This theorem proves the Stone-Weierstrass theorem for real-valued functions: let 𝐽 be a compact topology on 𝑇, and 𝐶 be the set of real continuous functions on 𝑇. Assume that 𝐴 is a subalgebra of 𝐶 (closed under addition and multiplication of functions) containing constant functions and discriminating points (if 𝑟 and 𝑡 are distinct points in 𝑇, then there exists a function ℎ in 𝐴 such that h(r) is distinct from h(t) ). Then, for any continuous function 𝐹 and for any positive real 𝐸, there exists a function 𝑓 in the subalgebra 𝐴, such that 𝑓 approximates 𝐹 up to 𝐸 (𝐸 represents the usual ε value). As a classical example, given any a, b reals, the closed interval 𝑇 = [𝑎, 𝑏] could be taken, along with the subalgebra 𝐴 of real polynomials on 𝑇, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on [𝑎, 𝑏]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. The deduction version of this theorem is stoweid 46078: often times it will be better to use stoweid 46078 in other proofs (but this version is probably easier to be read and understood). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝐽 ∈ Comp & ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾) & ⊢ 𝐴 ⊆ 𝐶 & ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ (𝑥 ∈ ℝ → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡) → ∃ℎ ∈ 𝐴 (ℎ‘𝑟) ≠ (ℎ‘𝑡)) & ⊢ 𝐹 ∈ 𝐶 & ⊢ 𝐸 ∈ ℝ+ ⇒ ⊢ ∃𝑓 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑓‘𝑡) − (𝐹‘𝑡))) < 𝐸 | ||
| Theorem | wallispilem1 46080* | 𝐼 is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐼‘(𝑁 + 1)) ≤ (𝐼‘𝑁)) | ||
| Theorem | wallispilem2 46081* | A first set of properties for the sequence 𝐼 that will be used in the proof of the Wallis product formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) ⇒ ⊢ ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑁 ∈ (ℤ≥‘2) → (𝐼‘𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))) | ||
| Theorem | wallispilem3 46082* | I maps to real values. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐼‘𝑁) ∈ ℝ+) | ||
| Theorem | wallispilem4 46083* | 𝐹 maps to explicit expression for the ratio of two consecutive values of 𝐼. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
| ⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))) & ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑧)↑𝑛) d𝑧) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇒ ⊢ 𝐺 = 𝐻 | ||
| Theorem | wallispilem5 46084* | The sequence 𝐻 converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
| ⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))) & ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1)))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) & ⊢ 𝐿 = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛))) ⇒ ⊢ 𝐻 ⇝ 1 | ||
| Theorem | wallispi 46085* | Wallis' formula for π : Wallis' product converges to π / 2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))) & ⊢ 𝑊 = (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛)) ⇒ ⊢ 𝑊 ⇝ (π / 2) | ||
| Theorem | wallispi2lem1 46086 | An intermediate step between the first version of the Wallis' formula for π and the second version of Wallis' formula. This second version will then be used to prove Stirling's approximation formula for the factorial. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
| ⊢ (𝑁 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))‘𝑁) = ((1 / ((2 · 𝑁) + 1)) · (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑁))) | ||
| Theorem | wallispi2lem2 46087 | Two expressions are proven to be equal, and this is used to complete the proof of the second version of Wallis' formula for π . (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
| ⊢ (𝑁 ∈ ℕ → (seq1( · , (𝑘 ∈ ℕ ↦ (((2 · 𝑘)↑4) / (((2 · 𝑘) · ((2 · 𝑘) − 1))↑2))))‘𝑁) = (((2↑(4 · 𝑁)) · ((!‘𝑁)↑4)) / ((!‘(2 · 𝑁))↑2))) | ||
| Theorem | wallispi2 46088 | An alternative version of Wallis' formula for π ; this second formula uses factorials and it is later used to prove Stirling's approximation formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1))) ⇒ ⊢ 𝑉 ⇝ (π / 2) | ||
| Theorem | stirlinglem1 46089 | A simple limit of fractions is computed. (Contributed by Glauco Siliprandi, 30-Jun-2017.) |
| ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) & ⊢ 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇒ ⊢ 𝐻 ⇝ (1 / 2) | ||
| Theorem | stirlinglem2 46090 | 𝐴 maps to positive reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐴‘𝑁) ∈ ℝ+) | ||
| Theorem | stirlinglem3 46091 | Long but simple algebraic transformations are applied to show that 𝑉, the Wallis formula for π , can be expressed in terms of 𝐴, the Stirling's approximation formula for the factorial, up to a constant factor. This will allow (in a later theorem) to determine the right constant factor to be put into the 𝐴, in order to get the exact Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛))) & ⊢ 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) & ⊢ 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1))) ⇒ ⊢ 𝑉 = (𝑛 ∈ ℕ ↦ ((((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))) | ||
| Theorem | stirlinglem4 46092* | Algebraic manipulation of ((𝐵 n ) - ( B (𝑛 + 1))). It will be used in other theorems to show that 𝐵 is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) = (𝐽‘𝑁)) | ||
| Theorem | stirlinglem5 46093* | If 𝑇 is between 0 and 1, then a series (without alternating negative and positive terms) is given that converges to log((1+T)/(1-T)). (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐷 = (𝑗 ∈ ℕ ↦ ((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗))) & ⊢ 𝐸 = (𝑗 ∈ ℕ ↦ ((𝑇↑𝑗) / 𝑗)) & ⊢ 𝐹 = (𝑗 ∈ ℕ ↦ (((-1↑(𝑗 − 1)) · ((𝑇↑𝑗) / 𝑗)) + ((𝑇↑𝑗) / 𝑗))) & ⊢ 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · (𝑇↑((2 · 𝑗) + 1))))) & ⊢ 𝐺 = (𝑗 ∈ ℕ0 ↦ ((2 · 𝑗) + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → (abs‘𝑇) < 1) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ⇝ (log‘((1 + 𝑇) / (1 − 𝑇)))) | ||
| Theorem | stirlinglem6 46094* | A series that converges to log((𝑁 + 1) / 𝑁). (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐻 = (𝑗 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑗) + 1))))) ⇒ ⊢ (𝑁 ∈ ℕ → seq0( + , 𝐻) ⇝ (log‘((𝑁 + 1) / 𝑁))) | ||
| Theorem | stirlinglem7 46095* | Algebraic manipulation of the formula for J(n). (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) & ⊢ 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))) & ⊢ 𝐻 = (𝑘 ∈ ℕ0 ↦ (2 · ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑((2 · 𝑘) + 1))))) ⇒ ⊢ (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ (𝐽‘𝑁)) | ||
| Theorem | stirlinglem8 46096 | If 𝐴 converges to 𝐶, then 𝐹 converges to C^2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑛𝐴 & ⊢ Ⅎ𝑛𝐷 & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛))) & ⊢ (𝜑 → 𝐴:ℕ⟶ℝ+) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛)↑4) / ((𝐷‘𝑛)↑2))) & ⊢ 𝐿 = (𝑛 ∈ ℕ ↦ ((𝐴‘𝑛)↑4)) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ ((𝐷‘𝑛)↑2)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘𝑛) ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 ⇝ 𝐶) ⇒ ⊢ (𝜑 → 𝐹 ⇝ (𝐶↑2)) | ||
| Theorem | stirlinglem9 46097* | ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) is expressed as a limit of a series. This result will be used both to prove that 𝐵 is decreasing and to prove that 𝐵 is bounded (below). It will follow that 𝐵 converges in the reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) & ⊢ 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))) ⇒ ⊢ (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1)))) | ||
| Theorem | stirlinglem10 46098* | A bound for any B(N)-B(N + 1) that will allow to find a lower bound for the whole 𝐵 sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))) & ⊢ 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘)) ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) ≤ ((1 / 4) · (1 / (𝑁 · (𝑁 + 1))))) | ||
| Theorem | stirlinglem11 46099* | 𝐵 is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵‘𝑁)) | ||
| Theorem | stirlinglem12 46100* | The sequence 𝐵 is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤ (𝐵‘𝑁)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |