|   | Mathbox for Jarvin Udandy | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aisbbisfaisf | Structured version Visualization version GIF version | ||
| Description: Given a is equivalent to b, b is equivalent to ⊥ there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| aisbbisfaisf.1 | ⊢ (𝜑 ↔ 𝜓) | 
| aisbbisfaisf.2 | ⊢ (𝜓 ↔ ⊥) | 
| Ref | Expression | 
|---|---|
| aisbbisfaisf | ⊢ (𝜑 ↔ ⊥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | aisbbisfaisf.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | aisbbisfaisf.2 | . 2 ⊢ (𝜓 ↔ ⊥) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝜑 ↔ ⊥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: mdandysum2p2e4 47016 | 
| Copyright terms: Public domain | W3C validator |