| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aisbbisfaisf | Structured version Visualization version GIF version | ||
| Description: Given a is equivalent to b, b is equivalent to ⊥ there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016.) |
| Ref | Expression |
|---|---|
| aisbbisfaisf.1 | ⊢ (𝜑 ↔ 𝜓) |
| aisbbisfaisf.2 | ⊢ (𝜓 ↔ ⊥) |
| Ref | Expression |
|---|---|
| aisbbisfaisf | ⊢ (𝜑 ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aisbbisfaisf.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | aisbbisfaisf.2 | . 2 ⊢ (𝜓 ↔ ⊥) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝜑 ↔ ⊥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mdandysum2p2e4 46970 |
| Copyright terms: Public domain | W3C validator |