![]() |
Metamath
Proof Explorer Theorem List (p. 464 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ringchom 46301 | Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) | ||
Theorem | elringchom 46302 | A morphism of unital rings is a function. (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) | ||
Theorem | ringchomfeqhom 46303 | The functionalized Hom-set operation equals the Hom-set operation in the category of unital rings (in a universe). (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) | ||
Theorem | ringccofval 46304 | Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) | ||
Theorem | ringcco 46305 | Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)) & ⊢ (𝜑 → 𝐺:(Base‘𝑌)⟶(Base‘𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
Theorem | dfringc2 46306 | Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
Theorem | rhmsscmap2 46307* | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
Theorem | rhmsscmap 46308* | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
Theorem | rhmsubcsetclem1 46309 | Lemma 1 for rhmsubcsetc 46311. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
Theorem | rhmsubcsetclem2 46310* | Lemma 2 for rhmsubcsetc 46311. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
Theorem | rhmsubcsetc 46311 | The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | ||
Theorem | ringccat 46312 | The category of unital rings is a category. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 9-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
Theorem | ringcid 46313 | The identity arrow in the category of unital rings is the identity function. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑆 = (Base‘𝑋) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) | ||
Theorem | rhmsscrnghm 46314 | The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the non-unital ring homomorphisms between non-unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝑆 = (Rng ∩ 𝑈)) ⇒ ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHomo ↾ (𝑆 × 𝑆))) | ||
Theorem | rhmsubcrngclem1 46315 | Lemma 1 for rhmsubcrngc 46317. (Contributed by AV, 9-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
Theorem | rhmsubcrngclem2 46316* | Lemma 2 for rhmsubcrngc 46317. (Contributed by AV, 12-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
Theorem | rhmsubcrngc 46317 | The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of non-unital rings. (Contributed by AV, 12-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) | ||
Theorem | rngcresringcat 46318 | The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.) |
⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) & ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) ⇒ ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) | ||
Theorem | ringcsect 46319 | A section in the category of unital rings, written out. (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Base‘𝑋) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) | ||
Theorem | ringcinv 46320 | An inverse in the category of unital rings is the converse operation. (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹))) | ||
Theorem | ringciso 46321 | An isomorphism in the category of unital rings is a bijection. (Contributed by AV, 14-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) | ||
Theorem | ringcbasbas 46322 | An element of the base set of the base set of the category of unital rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020.) |
⊢ 𝐶 = (RingCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ 𝐵) → (Base‘𝑅) ∈ 𝑈) | ||
Theorem | funcringcsetc 46323* | The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 26-Mar-2020.) |
⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
Theorem | funcringcsetcALTV2lem1 46324* | Lemma 1 for funcringcsetcALTV2 46333. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) | ||
Theorem | funcringcsetcALTV2lem2 46325* | Lemma 2 for funcringcsetcALTV2 46333. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝑈) | ||
Theorem | funcringcsetcALTV2lem3 46326* | Lemma 3 for funcringcsetcALTV2 46333. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | ||
Theorem | funcringcsetcALTV2lem4 46327* | Lemma 4 for funcringcsetcALTV2 46333. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) | ||
Theorem | funcringcsetcALTV2lem5 46328* | Lemma 5 for funcringcsetcALTV2 46333. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌))) | ||
Theorem | funcringcsetcALTV2lem6 46329* | Lemma 6 for funcringcsetcALTV2 46333. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) | ||
Theorem | funcringcsetcALTV2lem7 46330* | Lemma 7 for funcringcsetcALTV2 46333. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) | ||
Theorem | funcringcsetcALTV2lem8 46331* | Lemma 8 for funcringcsetcALTV2 46333. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝑆)(𝐹‘𝑌))) | ||
Theorem | funcringcsetcALTV2lem9 46332* | Lemma 9 for funcringcsetcALTV2 46333. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) | ||
Theorem | funcringcsetcALTV2 46333* | The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 16-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
Theorem | ringcbasALTV 46334 | Set of objects of the category of rings (in a universe). (Contributed by AV, 13-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | ||
Theorem | ringchomfvalALTV 46335* | Set of arrows of the category of rings (in a universe). (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 RingHom 𝑦))) | ||
Theorem | ringchomALTV 46336 | Set of arrows of the category of rings (in a universe). (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) | ||
Theorem | elringchomALTV 46337 | A morphism of rings is a function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))) | ||
Theorem | ringccofvalALTV 46338* | Composition in the category of rings. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) | ||
Theorem | ringccoALTV 46339 | Composition in the category of rings. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋 RingHom 𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌 RingHom 𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
Theorem | ringccatidALTV 46340* | Lemma for ringccatALTV 46341. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥))))) | ||
Theorem | ringccatALTV 46341 | The category of rings is a category. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
Theorem | ringcidALTV 46342 | The identity arrow in the category of rings is the identity function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑆 = (Base‘𝑋) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) | ||
Theorem | ringcsectALTV 46343 | A section in the category of rings, written out. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Base‘𝑋) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingHom 𝑌) ∧ 𝐺 ∈ (𝑌 RingHom 𝑋) ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐸)))) | ||
Theorem | ringcinvALTV 46344 | An inverse in the category of rings is the converse operation. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RingIso 𝑌) ∧ 𝐺 = ◡𝐹))) | ||
Theorem | ringcisoALTV 46345 | An isomorphism in the category of rings is a bijection. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RingIso 𝑌))) | ||
Theorem | ringcbasbasALTV 46346 | An element of the base set of the base set of the category of rings (i.e. the base set of a ring) belongs to the considered weak universe. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (RingCatALTV‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ 𝐵) → (Base‘𝑅) ∈ 𝑈) | ||
Theorem | funcringcsetclem1ALTV 46347* | Lemma 1 for funcringcsetcALTV 46356. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) | ||
Theorem | funcringcsetclem2ALTV 46348* | Lemma 2 for funcringcsetcALTV 46356. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝑈) | ||
Theorem | funcringcsetclem3ALTV 46349* | Lemma 3 for funcringcsetcALTV 46356. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | ||
Theorem | funcringcsetclem4ALTV 46350* | Lemma 4 for funcringcsetcALTV 46356. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) | ||
Theorem | funcringcsetclem5ALTV 46351* | Lemma 5 for funcringcsetcALTV 46356. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌))) | ||
Theorem | funcringcsetclem6ALTV 46352* | Lemma 6 for funcringcsetcALTV 46356. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑋 RingHom 𝑌)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) | ||
Theorem | funcringcsetclem7ALTV 46353* | Lemma 7 for funcringcsetcALTV 46356. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) | ||
Theorem | funcringcsetclem8ALTV 46354* | Lemma 8 for funcringcsetcALTV 46356. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝑆)(𝐹‘𝑌))) | ||
Theorem | funcringcsetclem9ALTV 46355* | Lemma 9 for funcringcsetcALTV 46356. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑅)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑅)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) | ||
Theorem | funcringcsetcALTV 46356* | The "natural forgetful functor" from the category of rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 16-Feb-2020.) (New usage is discouraged.) |
⊢ 𝑅 = (RingCatALTV‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
Theorem | irinitoringc 46357 | The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of [Adamek] p. 101 , and example in [Lang] p. 58. (Contributed by AV, 3-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ℤring ∈ 𝑈) & ⊢ 𝐶 = (RingCat‘𝑈) ⇒ ⊢ (𝜑 → ℤring ∈ (InitO‘𝐶)) | ||
Theorem | zrtermoringc 46358 | The zero ring is a terminal object in the category of unital rings. (Contributed by AV, 17-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑍 ∈ (TermO‘𝐶)) | ||
Theorem | zrninitoringc 46359* | The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing) ⇒ ⊢ (𝜑 → 𝑍 ∉ (InitO‘𝐶)) | ||
Theorem | nzerooringczr 46360 | There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → ℤring ∈ 𝑈) ⇒ ⊢ (𝜑 → (ZeroO‘𝐶) = ∅) | ||
Theorem | srhmsubclem1 46361* | Lemma 1 for srhmsubc 46364. (Contributed by AV, 19-Feb-2020.) |
⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) ⇒ ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝑈 ∩ Ring)) | ||
Theorem | srhmsubclem2 46362* | Lemma 2 for srhmsubc 46364. (Contributed by AV, 19-Feb-2020.) |
⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘(RingCat‘𝑈))) | ||
Theorem | srhmsubclem3 46363* | Lemma 3 for srhmsubc 46364. (Contributed by AV, 19-Feb-2020.) |
⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCat‘𝑈))𝑌)) | ||
Theorem | srhmsubc 46364* | According to df-subc 17695, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17726 and subcss2 17729). Therefore, the set of special ring homomorphisms (i.e., ring homomorphisms from a special ring to another ring of that kind) is a subcategory of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) |
⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCat‘𝑈))) | ||
Theorem | sringcat 46365* | The restriction of the category of (unital) rings to the set of special ring homomorphisms is a category. (Contributed by AV, 19-Feb-2020.) |
⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
Theorem | crhmsubc 46366* | According to df-subc 17695, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17726 and subcss2 17729). Therefore, the set of commutative ring homomorphisms (i.e. ring homomorphisms from a commutative ring to a commutative ring) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) |
⊢ 𝐶 = (𝑈 ∩ CRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCat‘𝑈))) | ||
Theorem | cringcat 46367* | The restriction of the category of (unital) rings to the set of commutative ring homomorphisms is a category, the "category of commutative rings". (Contributed by AV, 19-Feb-2020.) |
⊢ 𝐶 = (𝑈 ∩ CRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
Theorem | drhmsubc 46368* | According to df-subc 17695, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17726 and subcss2 17729). Therefore, the set of division ring homomorphisms is a "subcategory" of the category of (unital) rings. (Contributed by AV, 20-Feb-2020.) |
⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCat‘𝑈))) | ||
Theorem | drngcat 46369* | The restriction of the category of (unital) rings to the set of division ring homomorphisms is a category, the "category of division rings". (Contributed by AV, 20-Feb-2020.) |
⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
Theorem | fldcat 46370* | The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) |
⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) & ⊢ 𝐷 = (𝑈 ∩ Field) & ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCat‘𝑈) ↾cat 𝐹) ∈ Cat) | ||
Theorem | fldc 46371* | The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) |
⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) & ⊢ 𝐷 = (𝑈 ∩ Field) & ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) | ||
Theorem | fldhmsubc 46372* | According to df-subc 17695, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17726 and subcss2 17729). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) |
⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) & ⊢ 𝐷 = (𝑈 ∩ Field) & ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽))) | ||
Theorem | rngcrescrhm 46373 | The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) | ||
Theorem | rhmsubclem1 46374 | Lemma 1 for rhmsubc 46378. (Contributed by AV, 2-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) | ||
Theorem | rhmsubclem2 46375 | Lemma 2 for rhmsubc 46378. (Contributed by AV, 2-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) | ||
Theorem | rhmsubclem3 46376* | Lemma 3 for rhmsubc 46378. (Contributed by AV, 2-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
Theorem | rhmsubclem4 46377* | Lemma 4 for rhmsubc 46378. (Contributed by AV, 2-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
Theorem | rhmsubc 46378 | According to df-subc 17695, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17726 and subcss2 17729). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) | ||
Theorem | rhmsubccat 46379 | The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCat‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → ((RngCat‘𝑈) ↾cat 𝐻) ∈ Cat) | ||
Theorem | srhmsubcALTVlem1 46380* | Lemma 1 for srhmsubcALTV 46382. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ (Base‘(RingCatALTV‘𝑈))) | ||
Theorem | srhmsubcALTVlem2 46381* | Lemma 2 for srhmsubcALTV 46382. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ ((𝑈 ∈ 𝑉 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCatALTV‘𝑈))𝑌)) | ||
Theorem | srhmsubcALTV 46382* | According to df-subc 17695, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17726 and subcss2 17729). Therefore, the set of special ring homomorphisms (i.e., ring homomorphisms from a special ring to another ring of that kind) is a subcategory of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈))) | ||
Theorem | sringcatALTV 46383* | The restriction of the category of (unital) rings to the set of special ring homomorphisms is a category. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
⊢ ∀𝑟 ∈ 𝑆 𝑟 ∈ Ring & ⊢ 𝐶 = (𝑈 ∩ 𝑆) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
Theorem | crhmsubcALTV 46384* | According to df-subc 17695, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17726 and subcss2 17729). Therefore, the set of commutative ring homomorphisms (i.e. ring homomorphisms from a commutative ring to a commutative ring) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (𝑈 ∩ CRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈))) | ||
Theorem | cringcatALTV 46385* | The restriction of the category of (unital) rings to the set of commutative ring homomorphisms is a category, the "category of commutative rings". (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (𝑈 ∩ CRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
Theorem | drhmsubcALTV 46386* | According to df-subc 17695, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17726 and subcss2 17729). Therefore, the set of division ring homomorphisms is a "subcategory" of the category of (unital) rings. (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈))) | ||
Theorem | drngcatALTV 46387* | The restriction of the category of (unital) rings to the set of division ring homomorphisms is a category, the "category of division rings". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐽) ∈ Cat) | ||
Theorem | fldcatALTV 46388* | The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) & ⊢ 𝐷 = (𝑈 ∩ Field) & ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → ((RingCatALTV‘𝑈) ↾cat 𝐹) ∈ Cat) | ||
Theorem | fldcALTV 46389* | The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) & ⊢ 𝐷 = (𝑈 ∩ Field) & ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → (((RingCatALTV‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) | ||
Theorem | fldhmsubcALTV 46390* | According to df-subc 17695, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17726 and subcss2 17729). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) (New usage is discouraged.) |
⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) & ⊢ 𝐷 = (𝑈 ∩ Field) & ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘((RingCatALTV‘𝑈) ↾cat 𝐽))) | ||
Theorem | rngcrescrhmALTV 46391 | The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) | ||
Theorem | rhmsubcALTVlem1 46392 | Lemma 1 for rhmsubcALTV 46396. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) | ||
Theorem | rhmsubcALTVlem2 46393 | Lemma 2 for rhmsubcALTV 46396. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) | ||
Theorem | rhmsubcALTVlem3 46394* | Lemma 3 for rhmsubcALTV 46396. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) | ||
Theorem | rhmsubcALTVlem4 46395* | Lemma 4 for rhmsubcALTV 46396. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | ||
Theorem | rhmsubcALTV 46396 | According to df-subc 17695, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17726 and subcss2 17729). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈))) | ||
Theorem | rhmsubcALTVcat 46397 | The restriction of the category of non-unital rings to the set of unital ring homomorphisms is a category. (Contributed by AV, 4-Mar-2020.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RngCatALTV‘𝑈) & ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) & ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) ⇒ ⊢ (𝜑 → ((RngCatALTV‘𝑈) ↾cat 𝐻) ∈ Cat) | ||
Theorem | opeliun2xp 46398 | Membership of an ordered pair in a union of Cartesian products over its second component, analogous to opeliunxp 5699. (Contributed by AV, 30-Mar-2019.) |
⊢ (〈𝐶, 𝑦〉 ∈ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ↔ (𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴)) | ||
Theorem | eliunxp2 46399* | Membership in a union of Cartesian products over its second component, analogous to eliunxp 5793. (Contributed by AV, 30-Mar-2019.) |
⊢ (𝐶 ∈ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ↔ ∃𝑥∃𝑦(𝐶 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | ||
Theorem | mpomptx2 46400* | Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐴(𝑦) is not assumed to be constant w.r.t 𝑦, analogous to mpomptx 7469. (Contributed by AV, 30-Mar-2019.) |
⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) ⇒ ⊢ (𝑧 ∈ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |