| Metamath
Proof Explorer Theorem List (p. 464 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rrndsxmet 46301* | 𝐷 is an extended metric for the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐷 = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘 ∈ 𝑋 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝑋))) | ||
| Theorem | ioorrnopnlem 46302* | The a point in an indexed product of open intervals is contained in an open ball that is contained in the indexed product of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐹 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) & ⊢ 𝐻 = ran (𝑖 ∈ 𝑋 ↦ if(((𝐵‘𝑖) − (𝐹‘𝑖)) ≤ ((𝐹‘𝑖) − (𝐴‘𝑖)), ((𝐵‘𝑖) − (𝐹‘𝑖)), ((𝐹‘𝑖) − (𝐴‘𝑖)))) & ⊢ 𝐸 = inf(𝐻, ℝ, < ) & ⊢ 𝑉 = (𝐹(ball‘𝐷)𝐸) & ⊢ 𝐷 = (𝑓 ∈ (ℝ ↑m 𝑋), 𝑔 ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑘 ∈ 𝑋 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) | ||
| Theorem | ioorrnopn 46303* | The indexed product of open intervals is an open set in (ℝ^‘𝑋). (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ) ⇒ ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) | ||
| Theorem | ioorrnopnxrlem 46304* | Given a point 𝐹 that belongs to an indexed product of (possibly unbounded) open intervals, then 𝐹 belongs to an open product of bounded open intervals that's a subset of the original indexed product. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) & ⊢ (𝜑 → 𝐹 ∈ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖))) & ⊢ 𝐿 = (𝑖 ∈ 𝑋 ↦ if((𝐴‘𝑖) = -∞, ((𝐹‘𝑖) − 1), (𝐴‘𝑖))) & ⊢ 𝑅 = (𝑖 ∈ 𝑋 ↦ if((𝐵‘𝑖) = +∞, ((𝐹‘𝑖) + 1), (𝐵‘𝑖))) & ⊢ 𝑉 = X𝑖 ∈ 𝑋 ((𝐿‘𝑖)(,)(𝑅‘𝑖)) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹 ∈ 𝑣 ∧ 𝑣 ⊆ X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)))) | ||
| Theorem | ioorrnopnxr 46305* | The indexed product of open intervals is an open set in (ℝ^‘𝑋). Similar to ioorrnopn 46303 but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐴:𝑋⟶ℝ*) & ⊢ (𝜑 → 𝐵:𝑋⟶ℝ*) ⇒ ⊢ (𝜑 → X𝑖 ∈ 𝑋 ((𝐴‘𝑖)(,)(𝐵‘𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋))) | ||
Proofs for most of the theorems in section 111 of [Fremlin1] | ||
| Syntax | csalg 46306 | Extend class notation with the class of all sigma-algebras. |
| class SAlg | ||
| Definition | df-salg 46307* | Define the class of sigma-algebras. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ SAlg = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (∪ 𝑥 ∖ 𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥))} | ||
| Syntax | csalon 46308 | Extend class notation with the class of sigma-algebras on a set. |
| class SalOn | ||
| Definition | df-salon 46309* | Define the set of sigma-algebra on a given set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ SalOn = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ∪ 𝑠 = 𝑥}) | ||
| Syntax | csalgen 46310 | Extend class notation with the class of sigma-algebra generator. |
| class SalGen | ||
| Definition | df-salgen 46311* | Define the sigma-algebra generated by a given set. Definition 111G (b) of [Fremlin1] p. 13. The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set, see dfsalgen2 46339. The base set of the sigma-algebras used for the intersection needs to be the same, otherwise the resulting set is not guaranteed to be a sigma-algebra, as shown in the counterexample salgencntex 46341. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Revised by Glauco Siliprandi, 1-Jan-2021.) |
| ⊢ SalGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)}) | ||
| Theorem | issal 46312* | Express the predicate "𝑆 is a sigma-algebra." (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | ||
| Theorem | pwsal 46313 | The power set of a given set is a sigma-algebra (the so called discrete sigma-algebra). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ SAlg) | ||
| Theorem | salunicl 46314 | SAlg sigma-algebra is closed under countable union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝑆) & ⊢ (𝜑 → 𝑇 ≼ ω) ⇒ ⊢ (𝜑 → ∪ 𝑇 ∈ 𝑆) | ||
| Theorem | saluncl 46315 | The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∪ 𝐹) ∈ 𝑆) | ||
| Theorem | prsal 46316 | The pair of the empty set and the whole base is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → {∅, 𝑋} ∈ SAlg) | ||
| Theorem | saldifcl 46317 | The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | ||
| Theorem | 0sal 46318 | The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) | ||
| Theorem | salgenval 46319* | The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) | ||
| Theorem | saliunclf 46320 | SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝑆 & ⊢ Ⅎ𝑘𝐾 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐾 ≼ ω) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) | ||
| Theorem | saliuncl 46321* | SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐾 ≼ ω) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) | ||
| Theorem | salincl 46322 | The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ 𝐹) ∈ 𝑆) | ||
| Theorem | saluni 46323 | A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) | ||
| Theorem | saliinclf 46324 | SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝑆 & ⊢ Ⅎ𝑘𝐾 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐾 ≼ ω) & ⊢ (𝜑 → 𝐾 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) ⇒ ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) | ||
| Theorem | saliincl 46325* | SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐾 ≼ ω) & ⊢ (𝜑 → 𝐾 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) ⇒ ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) | ||
| Theorem | saldifcl2 46326 | The difference of two elements of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∖ 𝐹) ∈ 𝑆) | ||
| Theorem | intsaluni 46327* | The union of an arbitrary intersection of sigma-algebras on the same set 𝑋, is 𝑋. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐺 ⊆ SAlg) & ⊢ (𝜑 → 𝐺 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐺) → ∪ 𝑠 = 𝑋) ⇒ ⊢ (𝜑 → ∪ ∩ 𝐺 = 𝑋) | ||
| Theorem | intsal 46328* | The arbitrary intersection of sigma-algebra (on the same set 𝑋) is a sigma-algebra ( on the same set 𝑋, see intsaluni 46327). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐺 ⊆ SAlg) & ⊢ (𝜑 → 𝐺 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐺) → ∪ 𝑠 = 𝑋) ⇒ ⊢ (𝜑 → ∩ 𝐺 ∈ SAlg) | ||
| Theorem | salgenn0 46329* | The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) | ||
| Theorem | salgencl 46330 | SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) | ||
| Theorem | issald 46331* | Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → ∅ ∈ 𝑆) & ⊢ 𝑋 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑆 ∈ SAlg) | ||
| Theorem | salexct 46332* | An example of nontrivial sigma-algebra: the collection of all subsets which either are countable or have countable complement. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} ⇒ ⊢ (𝜑 → 𝑆 ∈ SAlg) | ||
| Theorem | sssalgen 46333 | A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ 𝑆 = (SalGen‘𝑋) ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝑆) | ||
| Theorem | salgenss 46334 | The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of [Fremlin1] p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex 46342, where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ 𝐺 = (SalGen‘𝑋) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝑋) ⇒ ⊢ (𝜑 → 𝐺 ⊆ 𝑆) | ||
| Theorem | salgenuni 46335 | The base set of the sigma-algebra generated by a set is the union of the set itself. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ 𝑆 = (SalGen‘𝑋) & ⊢ 𝑈 = ∪ 𝑋 ⇒ ⊢ (𝜑 → ∪ 𝑆 = 𝑈) | ||
| Theorem | issalgend 46336* | One side of dfsalgen2 46339. If a sigma-algebra on ∪ 𝑋 includes 𝑋 and it is included in all the sigma-algebras with such two properties, then it is the sigma-algebra generated by 𝑋. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝑋) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ ((𝜑 ∧ (𝑦 ∈ SAlg ∧ ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦)) → 𝑆 ⊆ 𝑦) ⇒ ⊢ (𝜑 → (SalGen‘𝑋) = 𝑆) | ||
| Theorem | salexct2 46337* | An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct 46332. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ 𝐴 = (0[,]2) & ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} & ⊢ 𝐵 = (0[,]1) ⇒ ⊢ ¬ 𝐵 ∈ 𝑆 | ||
| Theorem | unisalgen 46338 | The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ 𝑆 = (SalGen‘𝑋) & ⊢ 𝑈 = ∪ 𝑋 ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝑆) | ||
| Theorem | dfsalgen2 46339* | Alternate characterization of the sigma-algebra generated by a set. It is the smallest sigma-algebra, on the same base set, that includes the set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((SalGen‘𝑋) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆) ∧ ∀𝑦 ∈ SAlg ((∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦) → 𝑆 ⊆ 𝑦)))) | ||
| Theorem | salexct3 46340* | An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ 𝐴 = (0[,]2) & ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} & ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⇒ ⊢ (𝑆 ∈ SAlg ∧ 𝑋 ⊆ 𝑆 ∧ ¬ ∪ 𝑋 ∈ 𝑆) | ||
| Theorem | salgencntex 46341* | This counterexample shows that df-salgen 46311 needs to require that all containing sigma-algebra have the same base set. Otherwise, the intersection could lead to a set that is not a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ 𝐴 = (0[,]2) & ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} & ⊢ 𝐵 = (0[,]1) & ⊢ 𝑇 = 𝒫 𝐵 & ⊢ 𝐶 = (𝑆 ∩ 𝑇) & ⊢ 𝑍 = ∩ {𝑠 ∈ SAlg ∣ 𝐶 ⊆ 𝑠} ⇒ ⊢ ¬ 𝑍 ∈ SAlg | ||
| Theorem | salgensscntex 46342* | This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| ⊢ 𝐴 = (0[,]2) & ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} & ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) & ⊢ 𝐺 = (SalGen‘𝑋) ⇒ ⊢ (𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ SAlg ∧ ¬ 𝐺 ⊆ 𝑆) | ||
| Theorem | issalnnd 46343* | Sufficient condition to prove that 𝑆 is sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → ∅ ∈ 𝑆) & ⊢ 𝑋 = ∪ 𝑆 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑋 ∖ 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆) → ∪ 𝑛 ∈ ℕ (𝑒‘𝑛) ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑆 ∈ SAlg) | ||
| Theorem | dmvolsal 46344 | Lebesgue measurable sets form a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ dom vol ∈ SAlg | ||
| Theorem | saldifcld 46345 | The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) ⇒ ⊢ (𝜑 → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | ||
| Theorem | saluncld 46346 | The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ 𝑆) | ||
| Theorem | salgencld 46347 | SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ 𝑆 = (SalGen‘𝑋) ⇒ ⊢ (𝜑 → 𝑆 ∈ SAlg) | ||
| Theorem | 0sald 46348 | The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) ⇒ ⊢ (𝜑 → ∅ ∈ 𝑆) | ||
| Theorem | iooborel 46349 | An open interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ (𝐴(,)𝐶) ∈ 𝐵 | ||
| Theorem | salincld 46350 | The intersection of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐸 ∩ 𝐹) ∈ 𝑆) | ||
| Theorem | salunid 46351 | A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) ⇒ ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) | ||
| Theorem | unisalgen2 46352 | The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝑆 = (SalGen‘𝐴) ⇒ ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐴) | ||
| Theorem | bor1sal 46353 | The Borel sigma-algebra on the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ 𝐵 ∈ SAlg | ||
| Theorem | iocborel 46354 | A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) ⇒ ⊢ (𝜑 → (𝐴(,]𝐶) ∈ 𝐵) | ||
| Theorem | subsaliuncllem 46355* | A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ {𝑥 ∈ 𝑆 ∣ (𝐹‘𝑛) = (𝑥 ∩ 𝐷)}) & ⊢ 𝐸 = (𝐻 ∘ 𝐺) & ⊢ (𝜑 → 𝐻 Fn ran 𝐺) & ⊢ (𝜑 → ∀𝑦 ∈ ran 𝐺(𝐻‘𝑦) ∈ 𝑦) ⇒ ⊢ (𝜑 → ∃𝑒 ∈ (𝑆 ↑m ℕ)∀𝑛 ∈ ℕ (𝐹‘𝑛) = ((𝑒‘𝑛) ∩ 𝐷)) | ||
| Theorem | subsaliuncl 46356* | A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ 𝑇 = (𝑆 ↾t 𝐷) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑇) ⇒ ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐹‘𝑛) ∈ 𝑇) | ||
| Theorem | subsalsal 46357 | A subspace sigma-algebra is a sigma algebra. This is Lemma 121A of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ 𝑇 = (𝑆 ↾t 𝐷) ⇒ ⊢ (𝜑 → 𝑇 ∈ SAlg) | ||
| Theorem | subsaluni 46358 | A set belongs to the subspace sigma-algebra it induces. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝑆 ↾t 𝐴)) | ||
| Theorem | salrestss 46359 | A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑆 ↾t 𝐸) ⊆ 𝑆) | ||
| Syntax | csumge0 46360 | Extend class notation to include the sum of nonnegative extended reals. |
| class Σ^ | ||
| Definition | df-sumge0 46361* | Define the arbitrary sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) $. |
| ⊢ Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝑥‘𝑤)), ℝ*, < ))) | ||
| Theorem | sge0rnre 46362* | When Σ^ is applied to nonnegative real numbers the range used in its definition is a subset of the reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆ ℝ) | ||
| Theorem | fge0icoicc 46363 | If 𝐹 maps to nonnegative reals, then 𝐹 maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | ||
| Theorem | sge0val 46364* | The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝑋⟶(0[,]+∞)) → (Σ^‘𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑦 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑤 ∈ 𝑦 (𝐹‘𝑤)), ℝ*, < ))) | ||
| Theorem | fge0npnf 46365 | If 𝐹 maps to nonnegative reals, then +∞ is not in its range. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) | ||
| Theorem | sge0rnn0 46366* | The range used in the definition of Σ^ is not empty. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ≠ ∅ | ||
| Theorem | sge0vald 46367* | The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ))) | ||
| Theorem | fge0iccico 46368 | A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) ⇒ ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) | ||
| Theorem | gsumge0cl 46369 | Closure of group sum, for finitely supported nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐹 finSupp 0) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (0[,]+∞)) | ||
| Theorem | sge0reval 46370* | Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < )) | ||
| Theorem | sge0pnfval 46371 | If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → +∞ ∈ ran 𝐹) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = +∞) | ||
| Theorem | fge0iccre 46372 | A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) ⇒ ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) | ||
| Theorem | sge0z 46373* | Any nonnegative extended sum of zero is zero. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 0)) = 0) | ||
| Theorem | sge00 46374 | The sum of nonnegative extended reals is zero when applied to the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (Σ^‘∅) = 0 | ||
| Theorem | fsumlesge0 46375* | Every finite subsum of nonnegative reals is less than or equal to the extended sum over the whole (possibly infinite) domain. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ (𝜑 → 𝑌 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝑌 (𝐹‘𝑥) ≤ (Σ^‘𝐹)) | ||
| Theorem | sge0revalmpt 46376* | Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥 ∈ 𝑦 𝐵), ℝ*, < )) | ||
| Theorem | sge0sn 46377 | A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:{𝐴}⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = (𝐹‘𝐴)) | ||
| Theorem | sge0tsms 46378 | Σ^ applied to a nonnegative function (its meaningful domain) is the same as the infinite group sum (that's always convergent, in this case). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) ∈ (𝐺 tsums 𝐹)) | ||
| Theorem | sge0cl 46379 | The arbitrary sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) ∈ (0[,]+∞)) | ||
| Theorem | sge0f1o 46380* | Re-index a nonnegative extended sum using a bijection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = (Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) | ||
| Theorem | sge0snmpt 46381* | A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴} ↦ 𝐵)) = 𝐶) | ||
| Theorem | sge0ge0 46382 | The sum of nonnegative extended reals is nonnegative. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → 0 ≤ (Σ^‘𝐹)) | ||
| Theorem | sge0xrcl 46383 | The arbitrary sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ*) | ||
| Theorem | sge0repnf 46384 | The of nonnegative extended reals is a real number if and only if it is not +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → ((Σ^‘𝐹) ∈ ℝ ↔ ¬ (Σ^‘𝐹) = +∞)) | ||
| Theorem | sge0fsum 46385* | The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = Σ𝑥 ∈ 𝑋 (𝐹‘𝑥)) | ||
| Theorem | sge0rern 46386 | If the sum of nonnegative extended reals is not +∞ then no terms is +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) | ||
| Theorem | sge0supre 46387* | If the arbitrary sum of nonnegative extended reals is real, then it is the supremum (in the real numbers) of finite subsums. Similar to sge0sup 46389, but here we can use sup with respect to ℝ instead of ℝ*. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ, < )) | ||
| Theorem | sge0fsummpt 46388* | The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | sge0sup 46389* | The arbitrary sum of nonnegative extended reals is the supremum of finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑥))), ℝ*, < )) | ||
| Theorem | sge0less 46390 | A shorter sum of nonnegative extended reals is smaller than a longer one. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝐹 ↾ 𝑌)) ≤ (Σ^‘𝐹)) | ||
| Theorem | sge0rnbnd 46391* | The range used in the definition of Σ^ is bounded, when the whole sum is a real number. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) | ||
| Theorem | sge0pr 46392* | Sum of a pair of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) | ||
| Theorem | sge0gerp 46393* | The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) ⇒ ⊢ (𝜑 → 𝐴 ≤ (Σ^‘𝐹)) | ||
| Theorem | sge0pnffigt 46394* | If the sum of nonnegative extended reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) = +∞) & ⊢ (𝜑 → 𝑌 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹 ↾ 𝑥))) | ||
| Theorem | sge0ssre 46395 | If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ^‘(𝐹 ↾ 𝑌)) ∈ ℝ) | ||
| Theorem | sge0lefi 46396* | A sum of nonnegative extended reals is smaller than a given extended real if and only if every finite subsum is smaller than it. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((Σ^‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹 ↾ 𝑥)) ≤ 𝐴)) | ||
| Theorem | sge0lessmpt 46397* | A shorter sum of nonnegative extended reals is smaller than a longer one. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐶 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵))) | ||
| Theorem | sge0ltfirp 46398* | If the sum of nonnegative extended reals is real, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘𝐹) < ((Σ^‘(𝐹 ↾ 𝑥)) + 𝑌)) | ||
| Theorem | sge0prle 46399* | The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr 46392. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) | ||
| Theorem | sge0gerpmpt 46400* | The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦)) ⇒ ⊢ (𝜑 → 𝐶 ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |