Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axorbtnotaiffb | Structured version Visualization version GIF version |
Description: Given a is exclusive to b, there exists a proof for (not (a if-and-only-if b)); df-xor 1504 is a closed form of this. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
Ref | Expression |
---|---|
axorbtnotaiffb.1 | ⊢ (𝜑 ⊻ 𝜓) |
Ref | Expression |
---|---|
axorbtnotaiffb | ⊢ ¬ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axorbtnotaiffb.1 | . 2 ⊢ (𝜑 ⊻ 𝜓) | |
2 | df-xor 1504 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ¬ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ⊻ wxo 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-xor 1504 |
This theorem is referenced by: axorbciffatcxorb 44287 aifftbifffaibifff 44304 |
Copyright terms: Public domain | W3C validator |