Detailed syntax breakdown of Axiom ax-bj-bun
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | vt | . . . . . . 7
setvar 𝑡 | 
| 2 |  | vz | . . . . . . 7
setvar 𝑧 | 
| 3 | 1, 2 | wel 2109 | . . . . . 6
wff 𝑡 ∈ 𝑧 | 
| 4 |  | vx | . . . . . . . 8
setvar 𝑥 | 
| 5 | 1, 4 | wel 2109 | . . . . . . 7
wff 𝑡 ∈ 𝑥 | 
| 6 |  | vy | . . . . . . . 8
setvar 𝑦 | 
| 7 | 1, 6 | wel 2109 | . . . . . . 7
wff 𝑡 ∈ 𝑦 | 
| 8 | 5, 7 | wo 848 | . . . . . 6
wff (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦) | 
| 9 | 3, 8 | wb 206 | . . . . 5
wff (𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦)) | 
| 10 | 9, 1 | wal 1538 | . . . 4
wff
∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦)) | 
| 11 | 10, 2 | wex 1779 | . . 3
wff
∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦)) | 
| 12 | 11, 6 | wal 1538 | . 2
wff
∀𝑦∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦)) | 
| 13 | 12, 4 | wal 1538 | 1
wff
∀𝑥∀𝑦∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦)) |