| Metamath
Proof Explorer Theorem List (p. 373 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | bj-ccinftydisj 37201 | The circle at infinity is disjoint from the set of complex numbers. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ (ℂ ∩ ℂ∞) = ∅ | ||
| Theorem | bj-elccinfty 37202 | A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) | ||
| Syntax | cccbar 37203 | Syntax for the set of extended complex numbers ℂ̅. |
| class ℂ̅ | ||
| Definition | df-bj-ccbar 37204 | Definition of the set of extended complex numbers ℂ̅. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ ℂ̅ = (ℂ ∪ ℂ∞) | ||
| Theorem | bj-ccssccbar 37205 | Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ℂ ⊆ ℂ̅ | ||
| Theorem | bj-ccinftyssccbar 37206 | Infinite extended complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ℂ∞ ⊆ ℂ̅ | ||
| Syntax | cpinfty 37207 | Syntax for "plus infinity". |
| class +∞ | ||
| Definition | df-bj-pinfty 37208 | Definition of "plus infinity". (Contributed by BJ, 27-Jun-2019.) |
| ⊢ +∞ = (+∞ei‘0) | ||
| Theorem | bj-pinftyccb 37209 | The class +∞ is an extended complex number. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ +∞ ∈ ℂ̅ | ||
| Theorem | bj-pinftynrr 37210 | The extended complex number +∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ¬ +∞ ∈ ℂ | ||
| Syntax | cminfty 37211 | Syntax for "minus infinity". |
| class -∞ | ||
| Definition | df-bj-minfty 37212 | Definition of "minus infinity". (Contributed by BJ, 27-Jun-2019.) |
| ⊢ -∞ = (+∞ei‘π) | ||
| Theorem | bj-minftyccb 37213 | The class -∞ is an extended complex number. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ -∞ ∈ ℂ̅ | ||
| Theorem | bj-minftynrr 37214 | The extended complex number -∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ¬ -∞ ∈ ℂ | ||
| Theorem | bj-pinftynminfty 37215 | The extended complex numbers +∞ and -∞ are different. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ +∞ ≠ -∞ | ||
| Syntax | crrbar 37216 | Syntax for the set of extended real numbers. |
| class ℝ̅ | ||
| Definition | df-bj-rrbar 37217 | Definition of the set of extended real numbers. This aims to replace df-xr 11212. (Contributed by BJ, 29-Jun-2019.) |
| ⊢ ℝ̅ = (ℝ ∪ {-∞, +∞}) | ||
| Syntax | cinfty 37218 | Syntax for ∞. |
| class ∞ | ||
| Definition | df-bj-infty 37219 | Definition of ∞, the point at infinity of the real or complex projective line. (Contributed by BJ, 27-Jun-2019.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
| ⊢ ∞ = 𝒫 ∪ ℂ | ||
| Syntax | ccchat 37220 | Syntax for ℂ̂. |
| class ℂ̂ | ||
| Definition | df-bj-cchat 37221 | Define the complex projective line, or Riemann sphere. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ℂ̂ = (ℂ ∪ {∞}) | ||
| Syntax | crrhat 37222 | Syntax for ℝ̂. |
| class ℝ̂ | ||
| Definition | df-bj-rrhat 37223 | Define the real projective line. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ℝ̂ = (ℝ ∪ {∞}) | ||
| Theorem | bj-rrhatsscchat 37224 | The real projective line is included in the complex projective line. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ℝ̂ ⊆ ℂ̂ | ||
We define the operations of addition and opposite on the extended complex numbers and on the complex projective line (Riemann sphere) simultaneously, thus "overloading" the operations. | ||
| Syntax | caddcc 37225 | Syntax for the addition on extended complex numbers. |
| class +ℂ̅ | ||
| Definition | df-bj-addc 37226 | Define the additions on the extended complex numbers (on the subset of (ℂ̅ × ℂ̅) where it makes sense) and on the complex projective line (Riemann sphere). We use the plural in "additions" since these are two different operations, even though +ℂ̅ is overloaded. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ +ℂ̅ = (𝑥 ∈ (((ℂ × ℂ̅) ∪ (ℂ̅ × ℂ)) ∪ ((ℂ̂ × ℂ̂) ∪ ( I ↾ ℂ∞))) ↦ if(((1st ‘𝑥) = ∞ ∨ (2nd ‘𝑥) = ∞), ∞, if((1st ‘𝑥) ∈ ℂ, if((2nd ‘𝑥) ∈ ℂ, 〈((1st ‘(1st ‘𝑥)) +R (1st ‘(2nd ‘𝑥))), ((2nd ‘(1st ‘𝑥)) +R (2nd ‘(2nd ‘𝑥)))〉, (2nd ‘𝑥)), (1st ‘𝑥)))) | ||
| Syntax | coppcc 37227 | Syntax for negation on the set of extended complex numbers and the complex projective line (Riemann sphere). |
| class -ℂ̅ | ||
| Definition | df-bj-oppc 37228* | Define the negation (operation giving the opposite) on the set of extended complex numbers and the complex projective line (Riemann sphere). (Contributed by BJ, 22-Jun-2019.) |
| ⊢ -ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, (℩𝑦 ∈ ℂ (𝑥 +ℂ̅ 𝑦) = 0), (+∞eiτ‘(𝑥 +ℂ̅ 〈1/2, 0R〉))))) | ||
In this section, we redefine df-ltxr 11213 without the intermediate step of df-lt 11081. | ||
| Syntax | cltxr 37229 | Syntax for the standard (strict) order on the extended reals. |
| class <ℝ̅ | ||
| Definition | df-bj-lt 37230* | Define the standard (strict) order on the extended reals. (Contributed by BJ, 4-Feb-2023.) |
| ⊢ <ℝ̅ = ({𝑥 ∈ (ℝ̅ × ℝ̅) ∣ ∃𝑦∃𝑧(((1st ‘𝑥) = 〈𝑦, 0R〉 ∧ (2nd ‘𝑥) = 〈𝑧, 0R〉) ∧ 𝑦 <R 𝑧)} ∪ ((({-∞} × ℝ) ∪ (ℝ × {+∞})) ∪ ({-∞} × {+∞}))) | ||
Since one needs arguments in order to define multiplication in ℂ̅, and one needs complex multiplication in order to define arguments, it would be contrived to construct a whole theory for a temporary multiplication (and temporary powers, then temporary logarithm, and finally temporary argument) before redefining the extended complex multiplication. Therefore, we adopt a two-step process, see df-bj-mulc 37234. | ||
| Syntax | carg 37231 | Syntax for the argument of a nonzero extended complex number. |
| class Arg | ||
| Definition | df-bj-arg 37232 | Define the argument of a nonzero extended complex number. By convention, it has values in (-π, π]. Another convention chooses values in [0, 2π) but the present convention simplifies formulas giving the argument as an arctangent. (Contributed by BJ, 22-Jun-2019.) The "else" case of the second conditional operator, corresponding to infinite extended complex numbers other than -∞, gives a definition depending on the specific definition chosen for these numbers (df-bj-inftyexpitau 37187), and therefore should not be relied upon. (New usage is discouraged.) |
| ⊢ Arg = (𝑥 ∈ (ℂ̅ ∖ {0}) ↦ if(𝑥 ∈ ℂ, (ℑ‘(log‘𝑥)), if(𝑥<ℝ̅0, π, (((1st ‘𝑥) / (2 · π)) − π)))) | ||
| Syntax | cmulc 37233 | Syntax for the multiplication of extended complex numbers. |
| class ·ℂ̅ | ||
| Definition | df-bj-mulc 37234 |
Define the multiplication of extended complex numbers and of the complex
projective line (Riemann sphere). In our convention, a product with 0 is
0, even when the other factor is infinite. An alternate convention leaves
products of 0 with an infinite number undefined since the multiplication
is not continuous at these points. Note that our convention entails
(0 / 0) = 0 (given df-bj-invc 37236).
Note that this definition uses · and Arg and /. Indeed, it would be contrived to bypass ordinary complex multiplication, and the present two-step definition looks like a good compromise. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ ·ℂ̅ = (𝑥 ∈ ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦ if(((1st ‘𝑥) = 0 ∨ (2nd ‘𝑥) = 0), 0, if(((1st ‘𝑥) = ∞ ∨ (2nd ‘𝑥) = ∞), ∞, if(𝑥 ∈ (ℂ × ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)), (+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅ (Arg‘(2nd ‘𝑥))) / τ)))))) | ||
| Syntax | cinvc 37235 | Syntax for the inverse of nonzero extended complex numbers. |
| class -1ℂ̅ | ||
| Definition | df-bj-invc 37236* | Define inversion, which maps a nonzero extended complex number or element of the complex projective line (Riemann sphere) to its inverse. Beware of the overloading: the equality (-1ℂ̅‘0) = ∞ is to be understood in the complex projective line, but 0 as an extended complex number does not have an inverse, which we can state as (-1ℂ̅‘0) ∉ ℂ̅. Note that this definition relies on df-bj-mulc 37234, which does not bypass ordinary complex multiplication, but defines extended complex multiplication on top of it. Therefore, we could have used directly / instead of (℩... ·ℂ̅ ...). (Contributed by BJ, 22-Jun-2019.) |
| ⊢ -1ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ, (℩𝑦 ∈ ℂ (𝑥 ·ℂ̅ 𝑦) = 1), 0))) | ||
| Syntax | ciomnn 37237 | Syntax for the canonical bijection from (ω ∪ {ω}) onto (ℕ0 ∪ {+∞}). |
| class iω↪ℕ | ||
| Definition | df-bj-iomnn 37238* |
Definition of the canonical bijection from (ω ∪
{ω}) onto
(ℕ0 ∪ {+∞}).
To understand this definition, recall that set.mm constructs reals as couples whose first component is a prereal and second component is the zero prereal (in order that one have ℝ ⊆ ℂ), that prereals are equivalence classes of couples of positive reals, the latter are Dedekind cuts of positive rationals, which are equivalence classes of positive ordinals. In partiular, we take the successor ordinal at the beginning and subtract 1 at the end since the intermediate systems contain only (strictly) positive numbers. Note the similarity with df-bj-fractemp 37185 but we did not use the present definition there since we wanted to have defined +∞ first. See bj-iomnnom 37247 for its value at +∞. TODO: Prove ⊢ (iω↪ℕ‘∅) = 0. Define ⊢ ℕ0 = (iω↪ℕ “ ω) and ⊢ ℕ = (ℕ0 ∖ {0}). Prove ⊢ iω↪ℕ:(ω ∪ {ω})–1-1-onto→(ℕ0 ∪ {+∞}) and ⊢ (iω↪ℕ ↾ ω):ω–1-1-onto→ℕ0. Prove that these bijections are respectively an isomorphism of ordered "extended rigs" and of ordered rigs. Prove ⊢ (iω↪ℕ ↾ ω) = rec((𝑥 ∈ ℝ ↦ (𝑥 + 1)), 0). (Contributed by BJ, 18-Feb-2023.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
| ⊢ iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) | ||
| Theorem | bj-imafv 37239 | If the direct image of a singleton under any of two functions is the same, then the values of these functions at the corresponding point agree. (Contributed by BJ, 18-Mar-2023.) |
| ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹‘𝐴) = (𝐺‘𝐴)) | ||
| Theorem | bj-funun 37240 | Value of a function expressed as a union of two functions at a point not in the domain of one of them. (Contributed by BJ, 18-Mar-2023.) |
| ⊢ (𝜑 → 𝐹 = (𝐺 ∪ 𝐻)) & ⊢ (𝜑 → ¬ 𝐴 ∈ dom 𝐻) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) | ||
| Theorem | bj-fununsn1 37241 | Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at a point not equal to the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) & ⊢ (𝜑 → ¬ 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) | ||
| Theorem | bj-fununsn2 37242 | Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐺) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐹‘𝐵) = 𝐶) | ||
| Theorem | bj-fvsnun1 37243 | The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. (Contributed by NM, 23-Sep-2007.) Put in deduction form and remove two sethood hypotheses. (Revised by BJ, 18-Mar-2023.) |
| ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) & ⊢ (𝜑 → 𝐷 ∈ (𝐶 ∖ {𝐴})) ⇒ ⊢ (𝜑 → (𝐺‘𝐷) = (𝐹‘𝐷)) | ||
| Theorem | bj-fvsnun2 37244 | The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7157. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) | ||
| Theorem | bj-fvmptunsn1 37245* | Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) = 𝐷) | ||
| Theorem | bj-fvmptunsn2 37246* | Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at a point in the domain of the mapsto construction. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐸) → 𝐵 = 𝐺) ⇒ ⊢ (𝜑 → (𝐹‘𝐸) = 𝐺) | ||
| Theorem | bj-iomnnom 37247 | The canonical bijection from (ω ∪ {ω}) onto (ℕ0 ∪ {+∞}) maps ω to +∞. (Contributed by BJ, 18-Feb-2023.) |
| ⊢ (iω↪ℕ‘ω) = +∞ | ||
| Syntax | cnnbar 37248 | Syntax for the extended natural numbers. |
| class ℕ̅ | ||
| Definition | df-bj-nnbar 37249 | Definition of the extended natural numbers. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ ℕ̅ = (ℕ0 ∪ {+∞}) | ||
| Syntax | czzbar 37250 | Syntax for the extended integers. |
| class ℤ̅ | ||
| Definition | df-bj-zzbar 37251 | Definition of the extended integers. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ ℤ̅ = (ℤ ∪ {-∞, +∞}) | ||
| Syntax | czzhat 37252 | Syntax for the one-point-compactified integers. |
| class ℤ̂ | ||
| Definition | df-bj-zzhat 37253 | Definition of the one-point-compactified. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ ℤ̂ = (ℤ ∪ {∞}) | ||
| Syntax | cdivc 37254 | Syntax for the divisibility relation. |
| class ∥ℂ | ||
| Definition | df-bj-divc 37255* |
Definition of the divisibility relation (compare df-dvds 16223).
Since 0 is absorbing, ⊢ (𝐴 ∈ (ℂ̅ ∪ ℂ̂) → (𝐴 ∥ℂ 0)) and ⊢ ((0 ∥ℂ 𝐴) ↔ 𝐴 = 0). (Contributed by BJ, 28-Jul-2023.) |
| ⊢ ∥ℂ = {〈𝑥, 𝑦〉 ∣ (〈𝑥, 𝑦〉 ∈ ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂)) ∧ ∃𝑛 ∈ (ℤ̅ ∪ ℤ̂)(𝑛 ·ℂ̅ 𝑥) = 𝑦)} | ||
See ccmn 19710 and subsequents. The first few statements of this subsection can be put very early after ccmn 19710. Proposal: in the main part, make separate subsections of commutative monoids and abelian groups. Relabel cabl 19711 to "cabl" or, preferably, other labels containing "abl" to "abel", for consistency. | ||
| Theorem | bj-smgrpssmgm 37256 | Semigroups are magmas. (Contributed by BJ, 12-Apr-2024.) (Proof modification is discouraged.) |
| ⊢ Smgrp ⊆ Mgm | ||
| Theorem | bj-smgrpssmgmel 37257 | Semigroups are magmas (elemental version). (Contributed by BJ, 12-Apr-2024.) (Proof modification is discouraged.) |
| ⊢ (𝐺 ∈ Smgrp → 𝐺 ∈ Mgm) | ||
| Theorem | bj-mndsssmgrp 37258 | Monoids are semigroups. (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.) |
| ⊢ Mnd ⊆ Smgrp | ||
| Theorem | bj-mndsssmgrpel 37259 | Monoids are semigroups (elemental version). (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.) |
| ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) | ||
| Theorem | bj-cmnssmnd 37260 | Commutative monoids are monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ CMnd ⊆ Mnd | ||
| Theorem | bj-cmnssmndel 37261 | Commutative monoids are monoids (elemental version). This is a more direct proof of cmnmnd 19727, which relies on iscmn 19719. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ CMnd → 𝐴 ∈ Mnd) | ||
| Theorem | bj-grpssmnd 37262 | Groups are monoids. (Contributed by BJ, 5-Jan-2024.) (Proof modification is discouraged.) |
| ⊢ Grp ⊆ Mnd | ||
| Theorem | bj-grpssmndel 37263 | Groups are monoids (elemental version). Shorter proof of grpmnd 18872. (Contributed by BJ, 5-Jan-2024.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ Grp → 𝐴 ∈ Mnd) | ||
| Theorem | bj-ablssgrp 37264 | Abelian groups are groups. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ Abel ⊆ Grp | ||
| Theorem | bj-ablssgrpel 37265 | Abelian groups are groups (elemental version). This is a shorter proof of ablgrp 19715. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ Abel → 𝐴 ∈ Grp) | ||
| Theorem | bj-ablsscmn 37266 | Abelian groups are commutative monoids. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ Abel ⊆ CMnd | ||
| Theorem | bj-ablsscmnel 37267 | Abelian groups are commutative monoids (elemental version). This is a shorter proof of ablcmn 19717. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ Abel → 𝐴 ∈ CMnd) | ||
| Theorem | bj-modssabl 37268 | (The additive groups of) modules are abelian groups. (The elemental version is lmodabl 20815; see also lmodgrp 20773 and lmodcmn 20816.) (Contributed by BJ, 9-Jun-2019.) |
| ⊢ LMod ⊆ Abel | ||
| Theorem | bj-vecssmod 37269 | Vector spaces are modules. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ LVec ⊆ LMod | ||
| Theorem | bj-vecssmodel 37270 | Vector spaces are modules (elemental version). This is a shorter proof of lveclmod 21013. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ LVec → 𝐴 ∈ LMod) | ||
UPDATE: a similar summation is already defined as df-gsum 17405 (although it mixes finite and infinite sums, which makes it harder to understand). | ||
| Syntax | cfinsum 37271 | Syntax for the class "finite summation in monoids". |
| class FinSum | ||
| Definition | df-bj-finsum 37272* | Finite summation in commutative monoids. This finite summation function can be extended to pairs 〈𝑦, 𝑧〉 where 𝑦 is a left-unital magma and 𝑧 is defined on a totally ordered set (choosing left-associative composition), or dropping unitality and requiring nonempty families, or on any monoids for families of permutable elements, etc. We use the term "summation", even though the definition stands for any unital, commutative and associative composition law. (Contributed by BJ, 9-Jun-2019.) |
| ⊢ FinSum = (𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd ‘𝑥) ∧ 𝑠 = (seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚)))) | ||
| Theorem | bj-finsumval0 37273* | Value of a finite sum. (Contributed by BJ, 9-Jun-2019.) (Proof shortened by AV, 5-May-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ CMnd) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐵:𝐼⟶(Base‘𝐴)) ⇒ ⊢ (𝜑 → (𝐴 FinSum 𝐵) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) | ||
A few basic theorems to start affine, Euclidean, and Cartesian geometry. The first step is to define real vector spaces, then barycentric coordinates and convex hulls. | ||
In this section, we introduce real vector spaces. | ||
| Theorem | bj-fvimacnv0 37274 | Variant of fvimacnv 7025 where membership of 𝐴 in the domain is not needed provided the containing class 𝐵 does not contain the empty set. Note that this antecedent would not be needed with Definition df-afv 47121. (Contributed by BJ, 7-Jan-2024.) |
| ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 ↔ 𝐴 ∈ (◡𝐹 “ 𝐵))) | ||
| Theorem | bj-isvec 37275 | The predicate "is a vector space". (Contributed by BJ, 6-Jan-2024.) |
| ⊢ (𝜑 → 𝐾 = (Scalar‘𝑉)) ⇒ ⊢ (𝜑 → (𝑉 ∈ LVec ↔ (𝑉 ∈ LMod ∧ 𝐾 ∈ DivRing))) | ||
| Theorem | bj-fldssdrng 37276 | Fields are division rings. (Contributed by BJ, 6-Jan-2024.) |
| ⊢ Field ⊆ DivRing | ||
| Theorem | bj-flddrng 37277 | Fields are division rings (elemental version). (Contributed by BJ, 9-Nov-2024.) |
| ⊢ (𝐹 ∈ Field → 𝐹 ∈ DivRing) | ||
| Theorem | bj-rrdrg 37278 | The field of real numbers is a division ring. (Contributed by BJ, 6-Jan-2024.) |
| ⊢ ℝfld ∈ DivRing | ||
| Theorem | bj-isclm 37279 | The predicate "is a subcomplex module". (Contributed by BJ, 6-Jan-2024.) |
| ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐾 = (Base‘𝐹)) ⇒ ⊢ (𝜑 → (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))) | ||
| Syntax | crrvec 37280 | Syntax for the class of real vector spaces. |
| class ℝ-Vec | ||
| Definition | df-bj-rvec 37281 | Definition of the class of real vector spaces. The previous definition, ⊢ ℝ-Vec = {𝑥 ∈ LMod ∣ (Scalar‘𝑥) = ℝfld}, can be recovered using bj-isrvec 37282. The present one is preferred since it does not use any dummy variable. That ℝ-Vec could be defined with LVec in place of LMod is a consequence of bj-isrvec2 37288. (Contributed by BJ, 9-Jun-2019.) |
| ⊢ ℝ-Vec = (LMod ∩ (◡Scalar “ {ℝfld})) | ||
| Theorem | bj-isrvec 37282 | The predicate "is a real vector space". Using df-sca 17236 instead of scaid 17278 would shorten the proof by two syntactic steps, but it is preferable not to rely on the precise definition df-sca 17236. (Contributed by BJ, 6-Jan-2024.) |
| ⊢ (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ (Scalar‘𝑉) = ℝfld)) | ||
| Theorem | bj-rvecmod 37283 | Real vector spaces are modules (elemental version). (Contributed by BJ, 6-Jan-2024.) |
| ⊢ (𝑉 ∈ ℝ-Vec → 𝑉 ∈ LMod) | ||
| Theorem | bj-rvecssmod 37284 | Real vector spaces are modules. (Contributed by BJ, 6-Jan-2024.) |
| ⊢ ℝ-Vec ⊆ LMod | ||
| Theorem | bj-rvecrr 37285 | The field of scalars of a real vector space is the field of real numbers. (Contributed by BJ, 6-Jan-2024.) |
| ⊢ (𝑉 ∈ ℝ-Vec → (Scalar‘𝑉) = ℝfld) | ||
| Theorem | bj-isrvecd 37286 | The predicate "is a real vector space". (Contributed by BJ, 6-Jan-2024.) |
| ⊢ (𝜑 → (Scalar‘𝑉) = 𝐾) ⇒ ⊢ (𝜑 → (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LMod ∧ 𝐾 = ℝfld))) | ||
| Theorem | bj-rvecvec 37287 | Real vector spaces are vector spaces (elemental version). (Contributed by BJ, 6-Jan-2024.) |
| ⊢ (𝑉 ∈ ℝ-Vec → 𝑉 ∈ LVec) | ||
| Theorem | bj-isrvec2 37288 | The predicate "is a real vector space". (Contributed by BJ, 6-Jan-2024.) |
| ⊢ (𝜑 → (Scalar‘𝑉) = 𝐾) ⇒ ⊢ (𝜑 → (𝑉 ∈ ℝ-Vec ↔ (𝑉 ∈ LVec ∧ 𝐾 = ℝfld))) | ||
| Theorem | bj-rvecssvec 37289 | Real vector spaces are vector spaces. (Contributed by BJ, 6-Jan-2024.) |
| ⊢ ℝ-Vec ⊆ LVec | ||
| Theorem | bj-rveccmod 37290 | Real vector spaces are subcomplex modules (elemental version). (Contributed by BJ, 6-Jan-2024.) |
| ⊢ (𝑉 ∈ ℝ-Vec → 𝑉 ∈ ℂMod) | ||
| Theorem | bj-rvecsscmod 37291 | Real vector spaces are subcomplex modules. (Contributed by BJ, 6-Jan-2024.) |
| ⊢ ℝ-Vec ⊆ ℂMod | ||
| Theorem | bj-rvecsscvec 37292 | Real vector spaces are subcomplex vector spaces. (Contributed by BJ, 6-Jan-2024.) |
| ⊢ ℝ-Vec ⊆ ℂVec | ||
| Theorem | bj-rveccvec 37293 | Real vector spaces are subcomplex vector spaces (elemental version). (Contributed by BJ, 6-Jan-2024.) |
| ⊢ (𝑉 ∈ ℝ-Vec → 𝑉 ∈ ℂVec) | ||
| Theorem | bj-rvecssabl 37294 | (The additive groups of) real vector spaces are commutative groups. (Contributed by BJ, 9-Jun-2019.) |
| ⊢ ℝ-Vec ⊆ Abel | ||
| Theorem | bj-rvecabl 37295 | (The additive groups of) real vector spaces are commutative groups (elemental version). (Contributed by BJ, 9-Jun-2019.) |
| ⊢ (𝐴 ∈ ℝ-Vec → 𝐴 ∈ Abel) | ||
Some lemmas to ease algebraic manipulations. | ||
| Theorem | bj-subcom 37296 | A consequence of commutativity of multiplication. (Contributed by BJ, 6-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) − (𝐵 · 𝐴)) = 0) | ||
| Theorem | bj-lineqi 37297 | Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → ((𝐴 · 𝑋) + 𝐵) = 𝑌) ⇒ ⊢ (𝜑 → 𝑋 = ((𝑌 − 𝐵) / 𝐴)) | ||
Lemmas about barycentric coordinates. For the moment, this is limited to the one-dimensional case (complex line), where existence and uniqueness of barycentric coordinates are proved by bj-bary1 37300 (which computes them). It would be nice to prove the two-dimensional case (is it easier to use ad hoc computations, or Cramer formulas?), in order to do some planar geometry. | ||
| Theorem | bj-bary1lem 37298 | Lemma for bj-bary1 37300: expression for a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = ((((𝐵 − 𝑋) / (𝐵 − 𝐴)) · 𝐴) + (((𝑋 − 𝐴) / (𝐵 − 𝐴)) · 𝐵))) | ||
| Theorem | bj-bary1lem1 37299 | Lemma for bj-bary1 37300: computation of one of the two barycentric coordinates of a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋 − 𝐴) / (𝐵 − 𝐴)))) | ||
| Theorem | bj-bary1 37300 | Barycentric coordinates in one dimension (complex line). In the statement, 𝑋 is the barycenter of the two points 𝐴, 𝐵 with respective normalized coefficients 𝑆, 𝑇. (Contributed by BJ, 6-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) ↔ (𝑆 = ((𝐵 − 𝑋) / (𝐵 − 𝐴)) ∧ 𝑇 = ((𝑋 − 𝐴) / (𝐵 − 𝐴))))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |