![]() |
Metamath
Proof Explorer Theorem List (p. 373 of 474) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29923) |
![]() (29924-31446) |
![]() (31447-47372) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-comember 37201 |
Define the comember equivalence relation on the class 𝐴 (or, the
restricted coelement equivalence relation on its domain quotient 𝐴.)
Alternate definitions are dfcomember2 37208 and dfcomember3 37209.
Later on, in an application of set theory I make a distinction between the default elementhood concept and a special membership concept: membership equivalence relation will be an integral part of that membership concept. (Contributed by Peter Mazsa, 26-Jun-2021.) (Revised by Peter Mazsa, 28-Nov-2022.) |
⊢ ( CoMembEr 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | ||
Theorem | brers 37202 | Binary equivalence relation with natural domain, see the comment of df-ers 37198. (Contributed by Peter Mazsa, 23-Jul-2021.) |
⊢ (𝐴 ∈ 𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴))) | ||
Theorem | dferALTV2 37203 | Equivalence relation with natural domain predicate, see the comment of df-ers 37198. (Contributed by Peter Mazsa, 26-Jun-2021.) (Revised by Peter Mazsa, 30-Aug-2021.) |
⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | ||
Theorem | erALTVeq1 37204 | Equality theorem for equivalence relation on domain quotient. (Contributed by Peter Mazsa, 25-Sep-2021.) |
⊢ (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴)) | ||
Theorem | erALTVeq1i 37205 | Equality theorem for equivalence relation on domain quotient, inference version. (Contributed by Peter Mazsa, 25-Sep-2021.) |
⊢ 𝑅 = 𝑆 ⇒ ⊢ (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴) | ||
Theorem | erALTVeq1d 37206 | Equality theorem for equivalence relation on domain quotient, deduction version. (Contributed by Peter Mazsa, 25-Sep-2021.) |
⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴)) | ||
Theorem | dfcomember 37207 | Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ ( CoMembEr 𝐴 ↔ ∼ 𝐴 ErALTV 𝐴) | ||
Theorem | dfcomember2 37208 | Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 25-Sep-2021.) |
⊢ ( CoMembEr 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (dom ∼ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
Theorem | dfcomember3 37209 | Alternate definition of the comember equivalence relation. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
Theorem | eqvreldmqs 37210 | Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 26-Sep-2021.) (Revised by Peter Mazsa, 17-Jul-2023.) |
⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
Theorem | eqvreldmqs2 37211 | Two ways to express comember equivalence relation on its domain quotient. (Contributed by Peter Mazsa, 30-Dec-2024.) |
⊢ (( EqvRel ≀ (◡ E ↾ 𝐴) ∧ (dom ≀ (◡ E ↾ 𝐴) / ≀ (◡ E ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
Theorem | brerser 37212 | Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 25-Aug-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ 𝑅 ErALTV 𝐴)) | ||
Theorem | erimeq2 37213 | Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is prter3 37417 in a more convenient form , see also erimeq 37214). (Contributed by Rodolfo Medina, 19-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 29-Dec-2021.) |
⊢ (𝑅 ∈ 𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅)) | ||
Theorem | erimeq 37214 | Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is the most convenient form of prter3 37417 and erimeq2 37213). (Contributed by Peter Mazsa, 7-Oct-2021.) (Revised by Peter Mazsa, 29-Dec-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅)) | ||
Definition | df-funss 37215 | Define the class of all function sets (but not necessarily function relations, cf. df-funsALTV 37216). It is used only by df-funsALTV 37216. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Funss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels } | ||
Definition | df-funsALTV 37216 | Define the function relations class, i.e., the class of functions. Alternate definitions are dffunsALTV 37218, ... , dffunsALTV5 37222. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ FunsALTV = ( Funss ∩ Rels ) | ||
Definition | df-funALTV 37217 |
Define the function relation predicate, i.e., the function predicate.
This definition of the function predicate (based on a more general,
converse reflexive, relation) and the original definition of function in
set.mm df-fun 6503, are always the same, that is
( FunALTV 𝐹 ↔ Fun 𝐹), see funALTVfun 37233.
The element of the class of functions and the function predicate are the same, that is (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹) when 𝐹 is a set, see elfunsALTVfunALTV 37232. Alternate definitions are dffunALTV2 37223, ... , dffunALTV5 37226. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) | ||
Theorem | dffunsALTV 37218 | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels } | ||
Theorem | dffunsALTV2 37219 | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 30-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ≀ 𝑓 ⊆ I } | ||
Theorem | dffunsALTV3 37220* | Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 )}. (Contributed by Peter Mazsa, 30-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∀𝑥∀𝑦((𝑢𝑓𝑥 ∧ 𝑢𝑓𝑦) → 𝑥 = 𝑦)} | ||
Theorem | dffunsALTV4 37221* | Alternate definition of the class of functions. For the 𝑋 axis and the 𝑌 axis you can convert the right side to {𝑓 ∈ Rels ∣ ∀𝑥1∃*𝑦1𝑥1𝑓𝑦1}. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥} | ||
Theorem | dffunsALTV5 37222* | Alternate definition of the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓∀𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]◡𝑓 ∩ [𝑦]◡𝑓) = ∅)} | ||
Theorem | dffunALTV2 37223 | Alternate definition of the function relation predicate, cf. dfdisjALTV2 37249. (Contributed by Peter Mazsa, 8-Feb-2018.) |
⊢ ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹)) | ||
Theorem | dffunALTV3 37224* | Alternate definition of the function relation predicate, cf. dfdisjALTV3 37250. Reproduction of dffun2 6511. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 ) ∧ Rel 𝐹). (Contributed by NM, 29-Dec-1996.) |
⊢ ( FunALTV 𝐹 ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ Rel 𝐹)) | ||
Theorem | dffunALTV4 37225* | Alternate definition of the function relation predicate, cf. dfdisjALTV4 37251. This is dffun6 6514. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀𝑥1∃*𝑦1𝑥1𝐹𝑦1 ∧ Rel 𝐹). (Contributed by NM, 9-Mar-1995.) |
⊢ ( FunALTV 𝐹 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹)) | ||
Theorem | dffunALTV5 37226* | Alternate definition of the function relation predicate, cf. dfdisjALTV5 37252. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( FunALTV 𝐹 ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ Rel 𝐹)) | ||
Theorem | elfunsALTV 37227 | Elementhood in the class of functions. (Contributed by Peter Mazsa, 24-Jul-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV2 37228 | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV3 37229* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV4 37230* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTV5 37231* | Elementhood in the class of functions. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ 𝐹 ∈ Rels )) | ||
Theorem | elfunsALTVfunALTV 37232 | The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.) |
⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹)) | ||
Theorem | funALTVfun 37233 | Our definition of the function predicate df-funALTV 37217 (based on a more general, converse reflexive, relation) and the original definition of function in set.mm df-fun 6503, are always the same and interchangeable. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( FunALTV 𝐹 ↔ Fun 𝐹) | ||
Theorem | funALTVss 37234 | Subclass theorem for function. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ( FunALTV 𝐵 → FunALTV 𝐴)) | ||
Theorem | funALTVeq 37235 | Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
⊢ (𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) | ||
Theorem | funALTVeqi 37236 | Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ( FunALTV 𝐴 ↔ FunALTV 𝐵) | ||
Theorem | funALTVeqd 37237 | Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( FunALTV 𝐴 ↔ FunALTV 𝐵)) | ||
Definition | df-disjss 37238 | Define the class of all disjoint sets (but not necessarily disjoint relations, cf. df-disjs 37239). It is used only by df-disjs 37239. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Disjss = {𝑥 ∣ ≀ ◡𝑥 ∈ CnvRefRels } | ||
Definition | df-disjs 37239 |
Define the disjoint relations class, i.e., the class of disjoints. We
need Disjs for the definition of Parts and Part
for the
Partition-Equivalence Theorems: this need for Parts as disjoint relations
on their domain quotients is the reason why we must define Disjs
instead of simply using converse functions (cf. dfdisjALTV 37248).
The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 37262. Alternate definitions are dfdisjs 37243, ... , dfdisjs5 37247. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ Disjs = ( Disjss ∩ Rels ) | ||
Definition | df-disjALTV 37240 |
Define the disjoint relation predicate, i.e., the disjoint predicate. A
disjoint relation is a converse function of the relation by dfdisjALTV 37248,
see the comment of df-disjs 37239 why we need disjoint relations instead of
converse functions anyway.
The element of the class of disjoints and the disjoint predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set, see eldisjsdisj 37262. Alternate definitions are dfdisjALTV 37248, ... , dfdisjALTV5 37252. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) | ||
Definition | df-eldisjs 37241 | Define the disjoint element relations class, i.e., the disjoint elements class. The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set, see eleldisjseldisj 37264. (Contributed by Peter Mazsa, 28-Nov-2022.) |
⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } | ||
Definition | df-eldisj 37242 |
Define the disjoint element relation predicate, i.e., the disjoint
elementhood predicate. Read: the elements of 𝐴 are disjoint. The
element of the disjoint elements class and the disjoint elementhood
predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when
𝐴 is a set, see eleldisjseldisj 37264.
As of now, disjoint elementhood is defined as "partition" in set.mm : compare df-prt 37407 with dfeldisj5 37256. See also the comments of dfmembpart2 37305 and of df-parts 37300. (Contributed by Peter Mazsa, 17-Jul-2021.) |
⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | ||
Theorem | dfdisjs 37243 | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 18-Jul-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ∈ CnvRefRels } | ||
Theorem | dfdisjs2 37244 | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } | ||
Theorem | dfdisjs3 37245* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢∀𝑣∀𝑥((𝑢𝑟𝑥 ∧ 𝑣𝑟𝑥) → 𝑢 = 𝑣)} | ||
Theorem | dfdisjs4 37246* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑥∃*𝑢 𝑢𝑟𝑥} | ||
Theorem | dfdisjs5 37247* | Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑢 ∈ dom 𝑟∀𝑣 ∈ dom 𝑟(𝑢 = 𝑣 ∨ ([𝑢]𝑟 ∩ [𝑣]𝑟) = ∅)} | ||
Theorem | dfdisjALTV 37248 | Alternate definition of the disjoint relation predicate. A disjoint relation is a converse function of the relation, see the comment of df-disjs 37239 why we need disjoint relations instead of converse functions anyway. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ ( FunALTV ◡𝑅 ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV2 37249 | Alternate definition of the disjoint relation predicate, cf. dffunALTV2 37223. (Contributed by Peter Mazsa, 27-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV3 37250* | Alternate definition of the disjoint relation predicate, cf. dffunALTV3 37224. (Contributed by Peter Mazsa, 28-Jul-2021.) |
⊢ ( Disj 𝑅 ↔ (∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV4 37251* | Alternate definition of the disjoint relation predicate, cf. dffunALTV4 37225. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( Disj 𝑅 ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) | ||
Theorem | dfdisjALTV5 37252* | Alternate definition of the disjoint relation predicate, cf. dffunALTV5 37226. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ ( Disj 𝑅 ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) | ||
Theorem | dfeldisj2 37253 | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ≀ ◡(◡ E ↾ 𝐴) ⊆ I ) | ||
Theorem | dfeldisj3 37254* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 ∀𝑥 ∈ (𝑢 ∩ 𝑣)𝑢 = 𝑣) | ||
Theorem | dfeldisj4 37255* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) | ||
Theorem | dfeldisj5 37256* | Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) | ||
Theorem | eldisjs 37257 | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 24-Jul-2021.) |
⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs2 37258 | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs3 37259* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ Disjs ↔ (∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs4 37260* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ Disjs ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ 𝑅 ∈ Rels )) | ||
Theorem | eldisjs5 37261* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ))) | ||
Theorem | eldisjsdisj 37262 | The element of the class of disjoint relations and the disjoint relation predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set. (Contributed by Peter Mazsa, 25-Jul-2021.) |
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅)) | ||
Theorem | eleldisjs 37263 | Elementhood in the disjoint elements class. (Contributed by Peter Mazsa, 23-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) | ||
Theorem | eleldisjseldisj 37264 | The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set. (Contributed by Peter Mazsa, 23-Jul-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴)) | ||
Theorem | disjrel 37265 | Disjoint relation is a relation. (Contributed by Peter Mazsa, 15-Sep-2021.) |
⊢ ( Disj 𝑅 → Rel 𝑅) | ||
Theorem | disjss 37266 | Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ( Disj 𝐵 → Disj 𝐴)) | ||
Theorem | disjssi 37267 | Subclass theorem for disjoints, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ( Disj 𝐵 → Disj 𝐴) | ||
Theorem | disjssd 37268 | Subclass theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ( Disj 𝐵 → Disj 𝐴)) | ||
Theorem | disjeq 37269 | Equality theorem for disjoints. (Contributed by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵)) | ||
Theorem | disjeqi 37270 | Equality theorem for disjoints, inference version. (Contributed by Peter Mazsa, 22-Sep-2021.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ( Disj 𝐴 ↔ Disj 𝐵) | ||
Theorem | disjeqd 37271 | Equality theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 22-Sep-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( Disj 𝐴 ↔ Disj 𝐵)) | ||
Theorem | disjdmqseqeq1 37272 | Lemma for the equality theorem for partition parteq1 37309. (Contributed by Peter Mazsa, 5-Oct-2021.) |
⊢ (𝑅 = 𝑆 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))) | ||
Theorem | eldisjss 37273 | Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝐴 ⊆ 𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴)) | ||
Theorem | eldisjssi 37274 | Subclass theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ( ElDisj 𝐵 → ElDisj 𝐴) | ||
Theorem | eldisjssd 37275 | Subclass theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ( ElDisj 𝐵 → ElDisj 𝐴)) | ||
Theorem | eldisjeq 37276 | Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
Theorem | eldisjeqi 37277 | Equality theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ( ElDisj 𝐴 ↔ ElDisj 𝐵) | ||
Theorem | eldisjeqd 37278 | Equality theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
Theorem | disjres 37279* | Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023.) |
⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) | ||
Theorem | eldisjn0elb 37280 | Two forms of disjoint elements when the empty set is not an element of the class. (Contributed by Peter Mazsa, 31-Dec-2024.) |
⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj (◡ E ↾ 𝐴) ∧ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴)) | ||
Theorem | disjxrn 37281 | Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | ||
Theorem | disjxrnres5 37282* | Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023.) |
⊢ ( Disj (𝑅 ⋉ (𝑆 ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) | ||
Theorem | disjorimxrn 37283 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) | ||
Theorem | disjimxrn 37284 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 15-Dec-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ 𝑆)) | ||
Theorem | disjimres 37285 | Disjointness condition for restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ( Disj 𝑅 → Disj (𝑅 ↾ 𝐴)) | ||
Theorem | disjimin 37286 | Disjointness condition for intersection. (Contributed by Peter Mazsa, 11-Jun-2021.) (Revised by Peter Mazsa, 28-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ∩ 𝑆)) | ||
Theorem | disjiminres 37287 | Disjointness condition for intersection with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ∩ (𝑆 ↾ 𝐴))) | ||
Theorem | disjimxrnres 37288 | Disjointness condition for range Cartesian product with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ (𝑆 ↾ 𝐴))) | ||
Theorem | disjALTV0 37289 | The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.) |
⊢ Disj ∅ | ||
Theorem | disjALTVid 37290 | The class of identity relations is disjoint. (Contributed by Peter Mazsa, 20-Jun-2021.) |
⊢ Disj I | ||
Theorem | disjALTVidres 37291 | The class of identity relations restricted is disjoint. (Contributed by Peter Mazsa, 28-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
⊢ Disj ( I ↾ 𝐴) | ||
Theorem | disjALTVinidres 37292 | The intersection with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
⊢ Disj (𝑅 ∩ ( I ↾ 𝐴)) | ||
Theorem | disjALTVxrnidres 37293 | The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) | ||
Theorem | disjsuc 37294* | Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023.) |
⊢ (𝐴 ∈ 𝑉 → ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) | ||
Definition | df-antisymrel 37295 | Define the antisymmetric relation predicate. (Read: 𝑅 is an antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024.) |
⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | ||
Theorem | dfantisymrel4 37296 | Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
⊢ ( AntisymRel 𝑅 ↔ ((𝑅 ∩ ◡𝑅) ⊆ I ∧ Rel 𝑅)) | ||
Theorem | dfantisymrel5 37297* | Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) | ||
Theorem | antisymrelres 37298* | (Contributed by Peter Mazsa, 25-Jun-2024.) |
⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | ||
Theorem | antisymrelressn 37299 | (Contributed by Peter Mazsa, 29-Jun-2024.) |
⊢ AntisymRel (𝑅 ↾ {𝐴}) | ||
Definition | df-parts 37300 |
Define the class of all partitions, cf. the comment of df-disjs 37239.
Partitions are disjoints on domain quotients (or: domain quotients
restricted to disjoints).
This is a more general meaning of partition than we we are familiar with: the conventional meaning of partition (e.g. partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 ) is what we call membership partition here, cf. dfmembpart2 37305. The binary partitions relation and the partition predicate are the same, that is, (𝑅 Parts 𝐴 ↔ 𝑅 Part 𝐴) if 𝐴 and 𝑅 are sets, cf. brpartspart 37308. (Contributed by Peter Mazsa, 26-Jun-2021.) |
⊢ Parts = ( DomainQss ↾ Disjs ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |