| Metamath
Proof Explorer Theorem List (p. 373 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | bj-elid4 37201 | Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 ∈ I ↔ (1st ‘𝐴) = (2nd ‘𝐴))) | ||
| Theorem | bj-elid5 37202 | Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = (2nd ‘𝐴))) | ||
| Theorem | bj-elid6 37203 | Characterization of the elements of the diagonal of a Cartesian square. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ (𝐵 ∈ ( I ↾ 𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵))) | ||
| Theorem | bj-elid7 37204 | Characterization of the elements of the diagonal of a Cartesian square. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ (〈𝐵, 𝐶〉 ∈ ( I ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) | ||
This subsection defines a functionalized version of the identity relation, that can also be seen as the diagonal in a Cartesian square). As explained in df-bj-diag 37206, it will probably be deleted. | ||
| Syntax | cdiag2 37205 | Syntax for the diagonal of the Cartesian square of a set. |
| class Id | ||
| Definition | df-bj-diag 37206 |
Define the functionalized identity, which can also be seen as the diagonal
function. Its value is given in bj-diagval 37207 when it is viewed as the
functionalized identity, and in bj-diagval2 37208 when it is viewed as the
diagonal function.
Indeed, Definition df-br 5092 identifies a binary relation with the class of couples that are related by that binary relation (see eqrel2 38332 for the extensionality property of binary relations). As a consequence, the identity relation, or identity function (see funi 6513), on any class, can alternatively be seen as the diagonal of the cartesian square of that class. The identity relation on the universal class, I, is an "identity relation generator", since its restriction to any class is the identity relation on that class. It may be useful to consider a functionalized version of that fact, and that is the purpose of df-bj-diag 37206. Note: most proofs will only use its values (Id‘𝐴), in which case it may be enough to use ( I ↾ 𝐴) everywhere and dispense with this definition. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ Id = (𝑥 ∈ V ↦ ( I ↾ 𝑥)) | ||
| Theorem | bj-diagval 37207 | Value of the functionalized identity, or equivalently of the diagonal function. This expression views it as the functionalized identity, whereas bj-diagval2 37208 views it as the diagonal function. See df-bj-diag 37206 for the terminology. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ↾ 𝐴)) | ||
| Theorem | bj-diagval2 37208 | Value of the functionalized identity, or equivalently of the diagonal function. This expression views it as the diagonal function, whereas bj-diagval 37207 views it as the functionalized identity. See df-bj-diag 37206 for the terminology. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴))) | ||
| Theorem | bj-eldiag 37209 | Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid6 37203. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (Id‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st ‘𝐵) = (2nd ‘𝐵)))) | ||
| Theorem | bj-eldiag2 37210 | Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid7 37204. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (Id‘𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶))) | ||
Definitions of the functionalized direct image and inverse image. The functionalized direct (resp. inverse) image is the morphism component of the covariant (resp. contravariant) powerset endofunctor of the category of sets and relations (and, up to restriction, of its subcategory of sets and functions). Its object component is the powerset operation 𝒫 defined in df-pw 4552. | ||
| Syntax | cimdir 37211 | Syntax for the functionalized direct image. |
| class 𝒫* | ||
| Definition | df-imdir 37212* | Definition of the functionalized direct image, which maps a binary relation between two given sets to its associated direct image relation. (Contributed by BJ, 16-Dec-2023.) |
| ⊢ 𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ (𝑟 “ 𝑥) = 𝑦)})) | ||
| Theorem | bj-imdirvallem 37213* | Lemma for bj-imdirval 37214 and bj-iminvval 37226. (Contributed by BJ, 23-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝜓)})) ⇒ ⊢ (𝜑 → (𝐴𝐶𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)})) | ||
| Theorem | bj-imdirval 37214* | Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑟 “ 𝑥) = 𝑦)})) | ||
| Theorem | bj-imdirval2lem 37215* | Lemma for bj-imdirval2 37216 and bj-iminvval2 37227. (Contributed by BJ, 23-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝜓)} ∈ V) | ||
| Theorem | bj-imdirval2 37216* | Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) ⇒ ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) | ||
| Theorem | bj-imdirval3 37217 | Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) ⇒ ⊢ (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌))) | ||
| Theorem | bj-imdiridlem 37218* | Lemma for bj-imdirid 37219 and bj-iminvid 37228. (Contributed by BJ, 26-May-2024.) |
| ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (𝜑 ↔ 𝑥 = 𝑦)) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ 𝜑)} = ( I ↾ 𝒫 𝐴) | ||
| Theorem | bj-imdirid 37219 | Functorial property of the direct image: the direct image by the identity on a set is the identity on the powerset. (Contributed by BJ, 24-Dec-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) | ||
| Theorem | bj-opelopabid 37220* | Membership in an ordered-pair class abstraction. One can remove the DV condition on 𝑥, 𝑦 by using opabid 5465 in place of opabidw 5464. (Contributed by BJ, 22-May-2024.) |
| ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) | ||
| Theorem | bj-opabco 37221* | Composition of ordered-pair class abstractions. (Contributed by BJ, 22-May-2024.) |
| ⊢ ({〈𝑦, 𝑧〉 ∣ 𝜓} ∘ {〈𝑥, 𝑦〉 ∣ 𝜑}) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝜑 ∧ 𝜓)} | ||
| Theorem | bj-xpcossxp 37222 | The composition of two Cartesian products is included in the expected Cartesian product. There is equality if (𝐵 ∩ 𝐶) ≠ ∅, see xpcogend 14878. (Contributed by BJ, 22-May-2024.) |
| ⊢ ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐷) | ||
| Theorem | bj-imdirco 37223 | Functorial property of the direct image: the direct image by a composition is the composition of the direct images. (Contributed by BJ, 23-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) & ⊢ (𝜑 → 𝑆 ⊆ (𝐵 × 𝐶)) ⇒ ⊢ (𝜑 → ((𝐴𝒫*𝐶)‘(𝑆 ∘ 𝑅)) = (((𝐵𝒫*𝐶)‘𝑆) ∘ ((𝐴𝒫*𝐵)‘𝑅))) | ||
| Syntax | ciminv 37224 | Syntax for the functionalized inverse image. |
| class 𝒫* | ||
| Definition | df-iminv 37225* | Definition of the functionalized inverse image, which maps a binary relation between two given sets to its associated inverse image relation. (Contributed by BJ, 23-Dec-2023.) |
| ⊢ 𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝑥 = (◡𝑟 “ 𝑦))})) | ||
| Theorem | bj-iminvval 37226* | Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴𝒫*𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑟 “ 𝑦))})) | ||
| Theorem | bj-iminvval2 37227* | Value of the functionalized inverse image. (Contributed by BJ, 23-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) ⇒ ⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ 𝑥 = (◡𝑅 “ 𝑦))}) | ||
| Theorem | bj-iminvid 37228 | Functorial property of the inverse image: the inverse image by the identity on a set is the identity on the powerset. (Contributed by BJ, 26-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) | ||
We parameterize the set of infinite extended complex numbers ℂ∞ (df-bj-ccinfty 37245) using the real numbers ℝ (df-r 11013) via the function +∞eiτ. Since at that point, we have only defined the set of real numbers but no operations on it, we define a temporary "fractional part" function, which is more convenient to define on the temporary reals R (df-nr 10944) since we can use operations on the latter. We also define the temporary real "one-half" in order to define minus infinity (df-bj-minfty 37257) and then we can define the sets of extended real numbers and of extended complex numbers, and the projective real and complex lines, as well as addition and negation on these, and also the order relation on the extended reals (which bypasses the intermediate definition of a temporary order on the real numbers and then a superseding one on the extended real numbers). | ||
| Syntax | cfractemp 37229 | Syntax for the fractional part of a temporary real. |
| class {R | ||
| Definition | df-bj-fractemp 37230* |
Temporary definition: fractional part of a temporary real.
To understand this definition, recall the canonical injection ω⟶R, 𝑛 ↦ [{𝑥 ∈ Q ∣ 𝑥 <Q 〈suc 𝑛, 1o〉}, 1P] ~R where we successively take the successor of 𝑛 to land in positive integers, then take the couple with 1o as second component to land in positive rationals, then take the Dedekind cut that positive rational forms, and finally take the equivalence class of the couple with 1P as second component. Adding one at the beginning and subtracting it at the end is necessary since the constructions used in set.mm use the positive integers, positive rationals, and positive reals as intermediate number systems. (Contributed by BJ, 22-Jan-2023.) The precise definition is irrelevant and should generally not be used. One could even inline it. The definitive fractional part of an extended or projective complex number will be defined later. (New usage is discouraged.) |
| ⊢ {R = (𝑥 ∈ R ↦ (℩𝑦 ∈ R ((𝑦 = 0R ∨ (0R <R 𝑦 ∧ 𝑦 <R 1R)) ∧ ∃𝑛 ∈ ω ([〈{𝑧 ∈ Q ∣ 𝑧 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R +R 𝑦) = 𝑥))) | ||
| Syntax | cinftyexpitau 37231 | Syntax for the function +∞eiτ parameterizing ℂ∞. |
| class +∞eiτ | ||
| Definition | df-bj-inftyexpitau 37232 | Definition of the auxiliary function +∞eiτ parameterizing the circle at infinity ℂ∞ in ℂ̅. We use coupling with {R} to simplify the proof of bj-inftyexpitaudisj 37238. (Contributed by BJ, 22-Jan-2023.) The precise definition is irrelevant and should generally not be used. TODO: prove only the necessary lemmas to prove ⊢ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((+∞eiτ‘𝐴) = (+∞eiτ‘𝐵) ↔ (𝐴 − 𝐵) ∈ ℤ)). (New usage is discouraged.) |
| ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | ||
| Syntax | cccinftyN 37233 | Syntax for the circle at infinity ℂ∞N. |
| class ℂ∞N | ||
| Definition | df-bj-ccinftyN 37234 | Definition of the circle at infinity ℂ∞N. (Contributed by BJ, 22-Jun-2019.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
| ⊢ ℂ∞N = ran +∞eiτ | ||
| Theorem | bj-inftyexpitaufo 37235 | The function +∞eiτ written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023.) |
| ⊢ +∞eiτ:ℝ–onto→ℂ∞N | ||
| Syntax | chalf 37236 | Syntax for the temporary one-half. |
| class 1/2 | ||
| Definition | df-bj-onehalf 37237 |
Define the temporary real "one-half". Once the machinery is
developed,
the real number "one-half" is commonly denoted by (1 / 2).
(Contributed by BJ, 4-Feb-2023.) (New usage is discouraged.)
TODO: $p |- 1/2 e. R. $= ? $. (riotacl 7320) $p |- -. 0R = 1/2 $= ? $. (since -. ( 0R +R 0R ) = 1R ) $p |- 0R <R 1/2 $= ? $. $p |- 1/2 <R 1R $= ? $. $p |- ( {R ` 0R ) = 0R $= ? $. $p |- ( {R ` 1/2 ) = 1/2 $= ? $. df-minfty $a |- minfty = ( inftyexpitau ` <. 1/2 , 0R >. ) $. |
| ⊢ 1/2 = (℩𝑥 ∈ R (𝑥 +R 𝑥) = 1R) | ||
| Theorem | bj-inftyexpitaudisj 37238 | An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023.) |
| ⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ | ||
| Syntax | cinftyexpi 37239 | Syntax for the function +∞ei parameterizing ℂ∞. |
| class +∞ei | ||
| Definition | df-bj-inftyexpi 37240 | Definition of the auxiliary function +∞ei parameterizing the circle at infinity ℂ∞ in ℂ̅. We use coupling with ℂ to simplify the proof of bj-ccinftydisj 37246. It could seem more natural to define +∞ei on all of ℝ, but we want to use only basic functions in the definition of ℂ̅. TODO: transition to df-bj-inftyexpitau 37232 instead. (Contributed by BJ, 22-Jun-2019.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
| ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥, ℂ〉) | ||
| Theorem | bj-inftyexpiinv 37241 | Utility theorem for the inverse of +∞ei. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.) |
| ⊢ (𝐴 ∈ (-π(,]π) → (1st ‘(+∞ei‘𝐴)) = 𝐴) | ||
| Theorem | bj-inftyexpiinj 37242 | Injectivity of the parameterization +∞ei. Remark: a more conceptual proof would use bj-inftyexpiinv 37241 and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ ((𝐴 ∈ (-π(,]π) ∧ 𝐵 ∈ (-π(,]π)) → (𝐴 = 𝐵 ↔ (+∞ei‘𝐴) = (+∞ei‘𝐵))) | ||
| Theorem | bj-inftyexpidisj 37243 | An element of the circle at infinity is not a complex number. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.) |
| ⊢ ¬ (+∞ei‘𝐴) ∈ ℂ | ||
| Syntax | cccinfty 37244 | Syntax for the circle at infinity ℂ∞. |
| class ℂ∞ | ||
| Definition | df-bj-ccinfty 37245 | Definition of the circle at infinity ℂ∞. (Contributed by BJ, 22-Jun-2019.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
| ⊢ ℂ∞ = ran +∞ei | ||
| Theorem | bj-ccinftydisj 37246 | The circle at infinity is disjoint from the set of complex numbers. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ (ℂ ∩ ℂ∞) = ∅ | ||
| Theorem | bj-elccinfty 37247 | A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ (𝐴 ∈ (-π(,]π) → (+∞ei‘𝐴) ∈ ℂ∞) | ||
| Syntax | cccbar 37248 | Syntax for the set of extended complex numbers ℂ̅. |
| class ℂ̅ | ||
| Definition | df-bj-ccbar 37249 | Definition of the set of extended complex numbers ℂ̅. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ ℂ̅ = (ℂ ∪ ℂ∞) | ||
| Theorem | bj-ccssccbar 37250 | Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ℂ ⊆ ℂ̅ | ||
| Theorem | bj-ccinftyssccbar 37251 | Infinite extended complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ℂ∞ ⊆ ℂ̅ | ||
| Syntax | cpinfty 37252 | Syntax for "plus infinity". |
| class +∞ | ||
| Definition | df-bj-pinfty 37253 | Definition of "plus infinity". (Contributed by BJ, 27-Jun-2019.) |
| ⊢ +∞ = (+∞ei‘0) | ||
| Theorem | bj-pinftyccb 37254 | The class +∞ is an extended complex number. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ +∞ ∈ ℂ̅ | ||
| Theorem | bj-pinftynrr 37255 | The extended complex number +∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ¬ +∞ ∈ ℂ | ||
| Syntax | cminfty 37256 | Syntax for "minus infinity". |
| class -∞ | ||
| Definition | df-bj-minfty 37257 | Definition of "minus infinity". (Contributed by BJ, 27-Jun-2019.) |
| ⊢ -∞ = (+∞ei‘π) | ||
| Theorem | bj-minftyccb 37258 | The class -∞ is an extended complex number. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ -∞ ∈ ℂ̅ | ||
| Theorem | bj-minftynrr 37259 | The extended complex number -∞ is not a complex number. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ¬ -∞ ∈ ℂ | ||
| Theorem | bj-pinftynminfty 37260 | The extended complex numbers +∞ and -∞ are different. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ +∞ ≠ -∞ | ||
| Syntax | crrbar 37261 | Syntax for the set of extended real numbers. |
| class ℝ̅ | ||
| Definition | df-bj-rrbar 37262 | Definition of the set of extended real numbers. This aims to replace df-xr 11147. (Contributed by BJ, 29-Jun-2019.) |
| ⊢ ℝ̅ = (ℝ ∪ {-∞, +∞}) | ||
| Syntax | cinfty 37263 | Syntax for ∞. |
| class ∞ | ||
| Definition | df-bj-infty 37264 | Definition of ∞, the point at infinity of the real or complex projective line. (Contributed by BJ, 27-Jun-2019.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
| ⊢ ∞ = 𝒫 ∪ ℂ | ||
| Syntax | ccchat 37265 | Syntax for ℂ̂. |
| class ℂ̂ | ||
| Definition | df-bj-cchat 37266 | Define the complex projective line, or Riemann sphere. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ℂ̂ = (ℂ ∪ {∞}) | ||
| Syntax | crrhat 37267 | Syntax for ℝ̂. |
| class ℝ̂ | ||
| Definition | df-bj-rrhat 37268 | Define the real projective line. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ℝ̂ = (ℝ ∪ {∞}) | ||
| Theorem | bj-rrhatsscchat 37269 | The real projective line is included in the complex projective line. (Contributed by BJ, 27-Jun-2019.) |
| ⊢ ℝ̂ ⊆ ℂ̂ | ||
We define the operations of addition and opposite on the extended complex numbers and on the complex projective line (Riemann sphere) simultaneously, thus "overloading" the operations. | ||
| Syntax | caddcc 37270 | Syntax for the addition on extended complex numbers. |
| class +ℂ̅ | ||
| Definition | df-bj-addc 37271 | Define the additions on the extended complex numbers (on the subset of (ℂ̅ × ℂ̅) where it makes sense) and on the complex projective line (Riemann sphere). We use the plural in "additions" since these are two different operations, even though +ℂ̅ is overloaded. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ +ℂ̅ = (𝑥 ∈ (((ℂ × ℂ̅) ∪ (ℂ̅ × ℂ)) ∪ ((ℂ̂ × ℂ̂) ∪ ( I ↾ ℂ∞))) ↦ if(((1st ‘𝑥) = ∞ ∨ (2nd ‘𝑥) = ∞), ∞, if((1st ‘𝑥) ∈ ℂ, if((2nd ‘𝑥) ∈ ℂ, 〈((1st ‘(1st ‘𝑥)) +R (1st ‘(2nd ‘𝑥))), ((2nd ‘(1st ‘𝑥)) +R (2nd ‘(2nd ‘𝑥)))〉, (2nd ‘𝑥)), (1st ‘𝑥)))) | ||
| Syntax | coppcc 37272 | Syntax for negation on the set of extended complex numbers and the complex projective line (Riemann sphere). |
| class -ℂ̅ | ||
| Definition | df-bj-oppc 37273* | Define the negation (operation giving the opposite) on the set of extended complex numbers and the complex projective line (Riemann sphere). (Contributed by BJ, 22-Jun-2019.) |
| ⊢ -ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, (℩𝑦 ∈ ℂ (𝑥 +ℂ̅ 𝑦) = 0), (+∞eiτ‘(𝑥 +ℂ̅ 〈1/2, 0R〉))))) | ||
In this section, we redefine df-ltxr 11148 without the intermediate step of df-lt 11016. | ||
| Syntax | cltxr 37274 | Syntax for the standard (strict) order on the extended reals. |
| class <ℝ̅ | ||
| Definition | df-bj-lt 37275* | Define the standard (strict) order on the extended reals. (Contributed by BJ, 4-Feb-2023.) |
| ⊢ <ℝ̅ = ({𝑥 ∈ (ℝ̅ × ℝ̅) ∣ ∃𝑦∃𝑧(((1st ‘𝑥) = 〈𝑦, 0R〉 ∧ (2nd ‘𝑥) = 〈𝑧, 0R〉) ∧ 𝑦 <R 𝑧)} ∪ ((({-∞} × ℝ) ∪ (ℝ × {+∞})) ∪ ({-∞} × {+∞}))) | ||
Since one needs arguments in order to define multiplication in ℂ̅, and one needs complex multiplication in order to define arguments, it would be contrived to construct a whole theory for a temporary multiplication (and temporary powers, then temporary logarithm, and finally temporary argument) before redefining the extended complex multiplication. Therefore, we adopt a two-step process, see df-bj-mulc 37279. | ||
| Syntax | carg 37276 | Syntax for the argument of a nonzero extended complex number. |
| class Arg | ||
| Definition | df-bj-arg 37277 | Define the argument of a nonzero extended complex number. By convention, it has values in (-π, π]. Another convention chooses values in [0, 2π) but the present convention simplifies formulas giving the argument as an arctangent. (Contributed by BJ, 22-Jun-2019.) The "else" case of the second conditional operator, corresponding to infinite extended complex numbers other than -∞, gives a definition depending on the specific definition chosen for these numbers (df-bj-inftyexpitau 37232), and therefore should not be relied upon. (New usage is discouraged.) |
| ⊢ Arg = (𝑥 ∈ (ℂ̅ ∖ {0}) ↦ if(𝑥 ∈ ℂ, (ℑ‘(log‘𝑥)), if(𝑥<ℝ̅0, π, (((1st ‘𝑥) / (2 · π)) − π)))) | ||
| Syntax | cmulc 37278 | Syntax for the multiplication of extended complex numbers. |
| class ·ℂ̅ | ||
| Definition | df-bj-mulc 37279 |
Define the multiplication of extended complex numbers and of the complex
projective line (Riemann sphere). In our convention, a product with 0 is
0, even when the other factor is infinite. An alternate convention leaves
products of 0 with an infinite number undefined since the multiplication
is not continuous at these points. Note that our convention entails
(0 / 0) = 0 (given df-bj-invc 37281).
Note that this definition uses · and Arg and /. Indeed, it would be contrived to bypass ordinary complex multiplication, and the present two-step definition looks like a good compromise. (Contributed by BJ, 22-Jun-2019.) |
| ⊢ ·ℂ̅ = (𝑥 ∈ ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦ if(((1st ‘𝑥) = 0 ∨ (2nd ‘𝑥) = 0), 0, if(((1st ‘𝑥) = ∞ ∨ (2nd ‘𝑥) = ∞), ∞, if(𝑥 ∈ (ℂ × ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)), (+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅ (Arg‘(2nd ‘𝑥))) / τ)))))) | ||
| Syntax | cinvc 37280 | Syntax for the inverse of nonzero extended complex numbers. |
| class -1ℂ̅ | ||
| Definition | df-bj-invc 37281* | Define inversion, which maps a nonzero extended complex number or element of the complex projective line (Riemann sphere) to its inverse. Beware of the overloading: the equality (-1ℂ̅‘0) = ∞ is to be understood in the complex projective line, but 0 as an extended complex number does not have an inverse, which we can state as (-1ℂ̅‘0) ∉ ℂ̅. Note that this definition relies on df-bj-mulc 37279, which does not bypass ordinary complex multiplication, but defines extended complex multiplication on top of it. Therefore, we could have used directly / instead of (℩... ·ℂ̅ ...). (Contributed by BJ, 22-Jun-2019.) |
| ⊢ -1ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ, (℩𝑦 ∈ ℂ (𝑥 ·ℂ̅ 𝑦) = 1), 0))) | ||
| Syntax | ciomnn 37282 | Syntax for the canonical bijection from (ω ∪ {ω}) onto (ℕ0 ∪ {+∞}). |
| class iω↪ℕ | ||
| Definition | df-bj-iomnn 37283* |
Definition of the canonical bijection from (ω ∪
{ω}) onto
(ℕ0 ∪ {+∞}).
To understand this definition, recall that set.mm constructs reals as couples whose first component is a prereal and second component is the zero prereal (in order that one have ℝ ⊆ ℂ), that prereals are equivalence classes of couples of positive reals, the latter are Dedekind cuts of positive rationals, which are equivalence classes of positive ordinals. In partiular, we take the successor ordinal at the beginning and subtract 1 at the end since the intermediate systems contain only (strictly) positive numbers. Note the similarity with df-bj-fractemp 37230 but we did not use the present definition there since we wanted to have defined +∞ first. See bj-iomnnom 37292 for its value at +∞. TODO: Prove ⊢ (iω↪ℕ‘∅) = 0. Define ⊢ ℕ0 = (iω↪ℕ “ ω) and ⊢ ℕ = (ℕ0 ∖ {0}). Prove ⊢ iω↪ℕ:(ω ∪ {ω})–1-1-onto→(ℕ0 ∪ {+∞}) and ⊢ (iω↪ℕ ↾ ω):ω–1-1-onto→ℕ0. Prove that these bijections are respectively an isomorphism of ordered "extended rigs" and of ordered rigs. Prove ⊢ (iω↪ℕ ↾ ω) = rec((𝑥 ∈ ℝ ↦ (𝑥 + 1)), 0). (Contributed by BJ, 18-Feb-2023.) The precise definition is irrelevant and should generally not be used. (New usage is discouraged.) |
| ⊢ iω↪ℕ = ((𝑛 ∈ ω ↦ 〈[〈{𝑟 ∈ Q ∣ 𝑟 <Q 〈suc 𝑛, 1o〉}, 1P〉] ~R , 0R〉) ∪ {〈ω, +∞〉}) | ||
| Theorem | bj-imafv 37284 | If the direct image of a singleton under any of two functions is the same, then the values of these functions at the corresponding point agree. (Contributed by BJ, 18-Mar-2023.) |
| ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹‘𝐴) = (𝐺‘𝐴)) | ||
| Theorem | bj-funun 37285 | Value of a function expressed as a union of two functions at a point not in the domain of one of them. (Contributed by BJ, 18-Mar-2023.) |
| ⊢ (𝜑 → 𝐹 = (𝐺 ∪ 𝐻)) & ⊢ (𝜑 → ¬ 𝐴 ∈ dom 𝐻) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) | ||
| Theorem | bj-fununsn1 37286 | Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at a point not equal to the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) & ⊢ (𝜑 → ¬ 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) | ||
| Theorem | bj-fununsn2 37287 | Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) & ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐺) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐹‘𝐵) = 𝐶) | ||
| Theorem | bj-fvsnun1 37288 | The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. (Contributed by NM, 23-Sep-2007.) Put in deduction form and remove two sethood hypotheses. (Revised by BJ, 18-Mar-2023.) |
| ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) & ⊢ (𝜑 → 𝐷 ∈ (𝐶 ∖ {𝐴})) ⇒ ⊢ (𝜑 → (𝐺‘𝐷) = (𝐹‘𝐷)) | ||
| Theorem | bj-fvsnun2 37289 | The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7117. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) | ||
| Theorem | bj-fvmptunsn1 37290* | Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) = 𝐷) | ||
| Theorem | bj-fvmptunsn2 37291* | Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at a point in the domain of the mapsto construction. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ 𝐴) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐸) → 𝐵 = 𝐺) ⇒ ⊢ (𝜑 → (𝐹‘𝐸) = 𝐺) | ||
| Theorem | bj-iomnnom 37292 | The canonical bijection from (ω ∪ {ω}) onto (ℕ0 ∪ {+∞}) maps ω to +∞. (Contributed by BJ, 18-Feb-2023.) |
| ⊢ (iω↪ℕ‘ω) = +∞ | ||
| Syntax | cnnbar 37293 | Syntax for the extended natural numbers. |
| class ℕ̅ | ||
| Definition | df-bj-nnbar 37294 | Definition of the extended natural numbers. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ ℕ̅ = (ℕ0 ∪ {+∞}) | ||
| Syntax | czzbar 37295 | Syntax for the extended integers. |
| class ℤ̅ | ||
| Definition | df-bj-zzbar 37296 | Definition of the extended integers. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ ℤ̅ = (ℤ ∪ {-∞, +∞}) | ||
| Syntax | czzhat 37297 | Syntax for the one-point-compactified integers. |
| class ℤ̂ | ||
| Definition | df-bj-zzhat 37298 | Definition of the one-point-compactified. (Contributed by BJ, 28-Jul-2023.) |
| ⊢ ℤ̂ = (ℤ ∪ {∞}) | ||
| Syntax | cdivc 37299 | Syntax for the divisibility relation. |
| class ∥ℂ | ||
| Definition | df-bj-divc 37300* |
Definition of the divisibility relation (compare df-dvds 16161).
Since 0 is absorbing, ⊢ (𝐴 ∈ (ℂ̅ ∪ ℂ̂) → (𝐴 ∥ℂ 0)) and ⊢ ((0 ∥ℂ 𝐴) ↔ 𝐴 = 0). (Contributed by BJ, 28-Jul-2023.) |
| ⊢ ∥ℂ = {〈𝑥, 𝑦〉 ∣ (〈𝑥, 𝑦〉 ∈ ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂)) ∧ ∃𝑛 ∈ (ℤ̅ ∪ ℤ̂)(𝑛 ·ℂ̅ 𝑥) = 𝑦)} | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |