![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-unexg | Structured version Visualization version GIF version |
Description: Existence of binary unions of sets, proved from ax-bj-bun 36374. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-unexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elissetv 2806 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | elissetv 2806 | . 2 ⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) | |
3 | exdistrv 1951 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | |
4 | uneq12 4150 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
5 | ax-bj-bun 36374 | . . . . . . . . 9 ⊢ ∀𝑥∀𝑦∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦)) | |
6 | 5 | spi 2169 | . . . . . . . 8 ⊢ ∀𝑦∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦)) |
7 | 6 | spi 2169 | . . . . . . 7 ⊢ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦)) |
8 | bj-axbun 36373 | . . . . . . 7 ⊢ ((𝑥 ∪ 𝑦) ∈ V ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦))) | |
9 | 7, 8 | mpbir 230 | . . . . . 6 ⊢ (𝑥 ∪ 𝑦) ∈ V |
10 | 4, 9 | eqeltrrdi 2834 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝐴 ∪ 𝐵) ∈ V) |
11 | 10 | exlimiv 1925 | . . . 4 ⊢ (∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝐴 ∪ 𝐵) ∈ V) |
12 | 11 | exlimiv 1925 | . . 3 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝐴 ∪ 𝐵) ∈ V) |
13 | 3, 12 | sylbir 234 | . 2 ⊢ ((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → (𝐴 ∪ 𝐵) ∈ V) |
14 | 1, 2, 13 | syl2an 595 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3466 ∪ cun 3938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2163 ax-ext 2695 ax-bj-bun 36374 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-un 3945 |
This theorem is referenced by: bj-prexg 36376 bj-prex 36377 bj-adjfrombun 36383 |
Copyright terms: Public domain | W3C validator |