Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-unexg Structured version   Visualization version   GIF version

Theorem bj-unexg 37004
Description: Existence of binary unions of sets, proved from ax-bj-bun 37003. (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-unexg ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem bj-unexg
Dummy variables 𝑥 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elissetv 2825 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 elissetv 2825 . 2 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
3 exdistrv 1955 . . 3 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
4 uneq12 4186 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦) = (𝐴𝐵))
5 ax-bj-bun 37003 . . . . . . . . 9 𝑥𝑦𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡𝑦))
65spi 2185 . . . . . . . 8 𝑦𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡𝑦))
76spi 2185 . . . . . . 7 𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡𝑦))
8 bj-axbun 37002 . . . . . . 7 ((𝑥𝑦) ∈ V ↔ ∃𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡𝑦)))
97, 8mpbir 231 . . . . . 6 (𝑥𝑦) ∈ V
104, 9eqeltrrdi 2853 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝐴𝐵) ∈ V)
1110exlimiv 1929 . . . 4 (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (𝐴𝐵) ∈ V)
1211exlimiv 1929 . . 3 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (𝐴𝐵) ∈ V)
133, 12sylbir 235 . 2 ((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → (𝐴𝐵) ∈ V)
141, 2, 13syl2an 595 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  wal 1535   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cun 3974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-bj-bun 37003
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981
This theorem is referenced by:  bj-prexg  37005  bj-prex  37006  bj-adjfrombun  37012
  Copyright terms: Public domain W3C validator