| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axbun | Structured version Visualization version GIF version | ||
| Description: Two ways of stating the axiom of binary union (which is the universal closure of either side, see ax-bj-bun 37102). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-axbun | ⊢ ((𝑥 ∪ 𝑦) ∈ V ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4102 | . 2 ⊢ (𝑡 ∈ (𝑥 ∪ 𝑦) ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦)) | |
| 2 | 1 | bj-clex 37096 | 1 ⊢ ((𝑥 ∪ 𝑦) ∈ V ↔ ∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∀wal 1539 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 |
| This theorem is referenced by: bj-unexg 37103 |
| Copyright terms: Public domain | W3C validator |