Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axbun Structured version   Visualization version   GIF version

Theorem bj-axbun 37054
Description: Two ways of stating the axiom of binary union (which is the universal closure of either side, see ax-bj-bun 37055). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axbun ((𝑥𝑦) ∈ V ↔ ∃𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡𝑦)))
Distinct variable groups:   𝑥,𝑧,𝑡   𝑦,𝑧,𝑡

Proof of Theorem bj-axbun
StepHypRef Expression
1 elun 4128 . 2 (𝑡 ∈ (𝑥𝑦) ↔ (𝑡𝑥𝑡𝑦))
21bj-clex 37049 1 ((𝑥𝑦) ∈ V ↔ ∃𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  wal 1538  wex 1779  wcel 2108  Vcvv 3459  cun 3924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-un 3931
This theorem is referenced by:  bj-unexg  37056
  Copyright terms: Public domain W3C validator